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SUMMARY 

General analytical methods for the prediction of the attitude motion of a gravity 
gradient stabilized spacecraft a r e  developed for an elliptic orbit. Both planar and 
three-dimensional motion a re  treated. 

The linearized small  eccentricity equation describing the single degree of 
freedom in-plane motion (pitch motion) is a Mathieu equation. Combinations of 
spacecraft inertia parameters and orbit eccentricities for which the spacecraft 
pitch motion is unbounded are plotted from tables of the Mathieu function. Three 
regions of unstable motion a r e  found. 

The linearized planar equation for larger eccentricities is treated by means 
of the asymptotic expansion methods (in powers of the eccentricity) of Krylov, 
Bogoliubov, and Mitropolsky. A more accurate determination of the three regions 
of unstable motion found from Mathieu's equation is obtained. 

Finally an analysis based on the Hamiltonian formulation of the equations of 
motion demonstrates the effect of both nonlinear and parametric resonances on the 
three degree of freedom motion of the spacecraft. Canonical transformations and 
the method of averaging a re  used to determine combinations of eigenfrequencies of 
the normal modes which lead to various types of resonances. This is an extension 
of an ear l ier  work by Breakwell and Pringle in which six resonant frequency com- 
binations were found. Twenty-six additional resonance combinations a re  found of 
which sixteen lead to unbounded motion in one or  more of the modes and six lead to 
significant interchanges of energy between various modes. 

It is concluded first that the attitude motion of a spacecraft in an eccentric 
orbit has characterist ics significantly different from those of the corresponding 
motion in a circular orbit and second that theoretical methods a re  adequate to pre- 
dict, and hence avoid, the occurrence of unstable modes during the design of gravity 
gradient spacecraft. 
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ON T H E  L IBRATION OF A GRAVITY G R A D I E N T *  
STABIL IZED SPACECRAFT IN AN ECCENTRIC ORBIT 

by 
Albert J. Fleig, Jr. 

CHAPTER 1 

INTRODUCTION 

Histor ical  Background 
Analytic investigations of the effect of an inverse-square gravitational field on a triaxial sat- 

ellite have been published over a span of nearly 300 years. In 1686, Newton (Reference 1) wrote: 
". . . the figure of the moon would be a spheroid, whose greatest diameter produced would pass 
through the center of the earth.. . . Hence it is that the same face of the moon always is turned 
toward the earth; nor can the body of the moon possibly r e s t  in any other position, but would r e -  
turn always by a libratory motion to this situation. . . ." According to Routh (Reference 2), during 
the next 200 years the attention of D'Alembert, Lagrange, Laplace, and Poisson w a s  directed to- 
ward the gravity-gradient effect on the motion of the moon. By the beginning of the 20th century, 
correct equations for this torque were routinely published as in Plummer (Reference 3 ) .  One of 
the goals of these early investigators was  "selenodesy," i.e., making inferences about the struc- 
ture of the moon from observation of its motion. Present emphasis, apparently starting with a 
proposal for a hinged satellite by Breakwell and Roberson in 1954, centers on the other half of this 
problem, predicting spacecraft motion from a knowledge of its structure. 

The particular problem that forms the subject of this investigation-the motion of a gravity- 
gradient-stabilized spacecraft in an eccentric orbit-was first discussed by Baker (Reference 4). 
He commented that motion about the orbit normal (i.e. pitch) could be approximately represented by 
a linearized equation that was similar to a standard Mathieu equation with a forcing term added. 
Schrello (Reference 5) in his investigations of the gravity-gradient disturbance of aerodynamically 
stable spacecraft formulated the pitch motion problem in terms of Hill's equation. DeBra (Refer- 
ence 6) published a numerical investigation of the effect of orbit eccentricity on attitude stability. 
A number of Russian authors, particularly Beletskii (References 6,  8, and 9) and Chernous'ko (Ref- 
erence lo), made an analysis in which they applied asymptotic methods to the problem. Kane (Ref- 
erence 11) applied Floquet theory to a somewhat restricted three-dimensionalanalysis and discovered 

*Inits original form, this paper was submitted to the Catholic University of America in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy. 
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apparent instabilities in the nominally stable range of spacecraft parameters. Breakwell and 
Pringle (Reference 12) explained this phenomenon in t e rms  of a nonlinear resonance between the 
pitch and yaw frequencies. 

This dissertation contains several analytical approaches to the problem of determining the 
librational motion of rigid spacecraft in an eccentric orbit about an ideal spherical earth. The 
analysis is primarily concerned with the effect of orbit eccentricity on spacecraft motion; no other 
perturbations a r e  considered. The orbital motion (motion of the spacecraft's center of mass) is 
considered known a p ~ i o ~ i .  

Objectives 

The exact equations of motion for a gravity-gradient-stabilized spacecraft in an eccentric orbit 
a r e  coupled, time-varying, nonlinear, and insoluble in closed form. Thus analytic efforts have been 
concentrated on a number of special cases such as the linearized equations for three-dimensional 
motion in a circular orbit, the nonlinear equation for pitch motion in a circular orbit, the linear 
equation for pitch motion in an eccentric orbit, etc. Since a complete analytical solution is unavail- 
able, parameter selection for any particular spacecraft is based on a combination of linear analysis 
and numerical simulation. Yet linear analysis is unable to reveal many significant features of the 
equations of motion; furthermore, the basic phenomena underlying the results obtained from a nu- 
merical simulation a re  seldom explained. 

The major goal of this dissertation is to provide an explicit analytical basis for the effect of 
orbit eccentricity on spacecraft attitude. Two separate approaches to the problem are made. First, 
the asymptotic methods of Krylov, Bogoliubov, and Mitropolsky a r e  applied to the planar-pitch 
problem to obtain stability regions and, in the stable regions, to determine the forced responses. 
Then the nonlinear, three-dimensional problem is discussed, using canonical transformation and 
the method of averaging to obtain a locus of spacecraft inertia parameters that result in resonant 
motion. 

Other objectives a re  to provide increased understanding of one of the mechanisms by which 
nonlinear terms can produce unexpected results in problems with many degrees of freedom, and a 
basis for  application of the two approaches to particular mechanizations of the basic gravity- 
gradient-stabilization concept (e.g., to consider specific damping concepts). 

Chapter 2 discusses the linearized equation of spacecraft motion about the pitch axis (i.e. orbit 
normal), with the expansions of orbital parameters restricted to first order in eccentricity, e .  This 
is the simplest form of the problem. There a r e  several possible variations involving choices for 
reference axis and independent variable. Each of the choices leads to a Mathieu-type equation with 
a forcing term, but the final equations a r e  not identical. Regions of stable motion a r e  plotted as 
functions of orbit eccentricity and spacecraft inertia ratio for each of the formulations. The stability 
plots a r e  similar if e is very small but diverge rapidly as e increases. 
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Chapter 3 develops an asymptotic solution for the in-plane motion with a more accurate ex- 
pansion for the orbital elements. When the frequency of oscillation about the pitch axis is 1/2, 1, 
or  3/2 cycles per  orbit, there is a parametric excitation of the pitch motion, as in Chapter 2. The 
basic asymptotic solution for  this problem determines the magnitude of the induced oscillation 
about the nominal equilibrium axis (i.e., local vertical). However, this form of asymptotic solution 
fails in the vicinity of each parametric resonance. A second type of solution is developed for each 
of the resonant frequencies. These solutions are used to obtain boundaries for stable motion sim- 
ilar to those developed in Chapter 2. This completes the analytical treatment of the pitch motion 
case with one degree of freedom. The next two chapters are concerned with,the nonlinear equa- 
tions for the full three degrees of freedom. 

A different approach, first applied to this problem by Breakwell and Pringle (Reference 12) is 
used in the discussion of spacecraft motion with three degrees of freedom. A linearized description 
of the motion in  terms of normal modes leads to three uncoupled simple-harmonic oscillators in 
normal coordinates. Nonlinear te rms  and time-varying terms due to orbital eccentricity tend to 
cause changes in the fundamental uncoupled oscillations. These changes occur slowly in compari- 
son with the time for a single cycle of any of the normal modes, and only become significant when 
there is a resonant relationship between the frequency of the forcing terms and the appropriate 
normal mode( s). 

Chapter 4 develops the Hamiltonian for the system to the third order in generalized coordin- 
ates and momenta and with orbital motion represented in expansions to fourth order in e ;  also, a 
ser ies  of canonica l  transformations that first decouple the roll-yaw equations and then introduce 
cyclic coordinates. The resulting equations of motion represent a se t  of three harmonic oscillators 
perturbed by second-order te rms  and forcing functions. 

When the method of averaging is applied to the Hamiltonian in Chapter 5, the effect of the non- 
linear coupling t e rms  and the forcing te rms  becomes apparent. The amplitude and phase of the 
fundamental oscillations vary only slightly f rom their initial values except when there are reson- 
ances between the perturbing te rms  and the fundamental modes. Approximately 30 resonant rela- 
tions exist (when the Hamiltonian expansion is limited as noted above); the locus of each of the 
resonances is plotted in this chapter. It is possible to define regions about each of the resonances 
in  which the motion would change appreciably. The conditions which define these regions a r e  given 
for  each of the possible resonances. 

The appendices contain a discussion of the coupling between orbital motion and attitude motion 
and the specific extensions of the asymptotic formulas used in Chapter 3 for the third-order 
solutions. 

Comments on linearization and Stability 

Linear differential equations are so convenient, and dynamics problems starting with the pen- 
dulum are so often linearized, that linearization is frequently resorted to without adequate consid- 
eration of its validity. Speaking somewhat broadly, it is valid to linearize equations if  the resulting 
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solution does not differ appreciably from the solution to the exact equations. The validity is fre- 
quently determined by intuition, o r  comparison with other similar equations; however, a more cor- 
rect  justification can be obtained by comparing the analytic results for the linear equation with 
those obtained from integration of the exact equations performed, for  instance, cjn an analog or  dig- 
ital computer. There a r e  rigorous mathematical conditions under which linearization is valid and 
these are discussed by Struble (Reference 13) and Cesari  (Reference 14) among others. Unfortu- 
nately, these a re  only sufficient conditions fo r  linearization to succeed o r  fail, not necessary ones. 
In general, if the equilibrium solution to the linear portion of the equation is asymptotically stable 
and the nonlinear portion meets certain conditions, the equilibrium solution of the complete equa- 
tion is also asymptotically stable. When the solution to the linear equation is stable but not asymp- 
totically so  (as in this problem), no information concerning the adequacy of the linear solution is 
obtained. In fact, in the last chapter of this dissertation a number of unstable regions a r e  found 
for the nonlinear 'equations in regions that satisfy all the stability cr i ter ia  for the linearized equations. 

According to Stoker (Reference 15), stability is a concept that means different things to dif- 
ferent people. In this dissertation a linear system will be defined as asymptotically stable if all 
the characteristic numbers of the Floquet form of solution (Struble, Reference 13) have negative 
real parts, stable i f  no root has a positive real  part, and unstable if any root has a positive real  
part. This is contrary to the standard servomechanism practice, in that an undamped bounded 
oscillator would be stable under the above definition. In discussing stability for nonlinear systems 
the concept of Liapunov stability (Reference 14) is usually satisfactory. Note that a conclusion of 
instability based on approximate equations guarantees only that the motion will increase until higher- 
order terms not included in the analysis become important. 

In formulating approximate equations there is no clear-cut rule as to the number or order of 
terms that should be retained. Similarly with asymptotic solutions there is a question as to the 
order of approximation to which the solution should be continued. The inclusion of additional t e rms  
in the equations o r  solutions will usually have one of two effects. Either the extension will intro- 
duce new phenomena into the solution, (e.g., including the nonlinear term in van-der Pol's equation), 
or it will increase the precision of the solution of a particular problem (e.g., continuing the ex- 
pansion of s i n  x for a simple pendulum). In this dissertation the intent is to include any reasonable 
extension that effects a basic change in the solution, but not to add terms solely to increase the 
precision of a result. 

Notation and Definitions 

Four right-handed orthogonal coordinate frames shown in Figure 2-2, are used in this disserta- 
tion as follows: 

E l  = zl, z2, z, An inertial system with origin at the earth's center with: 
E l ,  a unit vector towards perigee of the spacecraft orbit, 
E3, a unit vector parallel to the spacecraft-orbit angular-momentum 

vector, and - - +  
E, = E, x E,. 
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+ [3)1 = 5,' a; 2; 

A local vertical  system with origin at the spacecraft center of mass, 
with: 
5 , ,  a unit vector parallel to a vector from the earth center of mass 

%,, a unit vector parallel to E3, and 

+ 

to the spacecraft center of mass, 

+ 41, = i, x 5 , .  

A mean vertical  system with origin at the spacecraft center of mass, 
with: 
ill , a unit vector parallel to a vector from the earth center of mass to 

that of an imaginary spacecraft in a circular orbit with the same 
period and the same phase as the subject spacecraft, 

x;, a unit vector parallel to z,, and 
+ 75; = 2; x C1'. 

A principal body-axis system, with: 
G I  , a unit vector along the axis of least  inertia, 
G ,  , a unit vector along the intermediate axis, and 
S , ,  a unit vector along the axis of maximum inertia. 

Notation relating to coordinate transformations: 

[A] = direction cosine matrix 

Ai ( 7 7 )  = direction cosine matrix for a rotation through an angle 77 about the i t h  axis. 

The coordinate f rames are located by the following rotation matrices: 

Local vertical-inertial 

where v is the true anomaly and 

[ c o s v  s i l v  i] 
A3 ( v )  = - s i n v  cos v 

0 1 

Mean vertical-inertial 

where M is the mean anomaly. 
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Local vertical-mean vertical 

Body-local vertical 

where 6, ( 2 ,  and $ a re  Euler angles designated as pitch, roll, and yaw respectively and 

cos cos e sin &cos  P - sintj 

cos 0 sin 

cos  ti C O S  

6 sin H sin $ - sin d cos y! 

u? sin 6 cos 4 + s i n  & sin 4 

sin r$ sin 8 sin $ + cos 6 cos 4 

sin qb sin 0 cos $ - cos qb sin 4 

Body- mean vertical 

[zj = A’ ( $ ) A 2  ( t i ) A 3  (6’) [21 

where 6 = d’ + v -M.  

Conventions and Units 

The unit of time is chosen so that the mean angular motion, n, is one, thus M = t . 
Units of mass and length a re  choser, such that I = 1; and dimensionless parameters r l  and 

r 2  a re  defined a s  

A superscript dot will indicate a derivative taken with respect to the independent variable 
which may be either t o r  V .  

A subscript zero indicates an initial value. 

6 



CHAPTER 2 

PLANAR PITCH LIBRATION AS A MATHIEU FUNCTION 

Introduction 

A complete formulation of the equations of motion for a rigid body in an inverse-square force 
field yields six coupled, nonlinear, second-order differential equations. The motion of a gravity- 
gradient-stabilized spacecraft cannot be determined analytically when presented in this exact form. 
However, there are possible approximations that lead to significant results. This chapter intro- 
duces a ser ies  of assumptions that reduce the problem to consideration of the small-angle pitch 
librations of a spacecraft moving in a known orbit of small eccentricity, and from there to a form 
of Mathieu's equation. Even this highly restrictive formulation yields interesting results not ob- 
tained from circular-orbit analysis. 

Beletskii (Reference 8) and Baker (Reference 4) noted the connection between an approximate 
form of the in-plane pitch-libration problem defined below and a Mathieu equation. Beletskii dis- 
cussed an equation formulated with true anomaly as the independent variable, and Baker expressed 
the problem with time as the independent variable. This chapter demonstrates the differences that 
result from these two choices. A set of graphs a r e  developed herein which present the stability 
boundaries associated with each of the approaches as a function of the inertia ratios of the space- 
craft and the orbital eccentricity. Finally the effect of velocity-dependent damping on spacecraft 
stability is shown. 

The first assumption for this and all the following chapters is that the motion of the space- 
craft 's center of mass (orbital motion) is not affected by motion of the spacecraft about its center 
of mass (attitude motion). With this widely accepted simplification, the equations representing 
orbital motion a r e  identical with those for a point mass in an inverse-square force field. 

The converse of this first assumption is not true, and it is necessary to include the orbital 
parameters as known functions of time when solving for the spacecraft attitude motion. In essence, 
this is equivalent to assuming that energy can be transferred from orbital motion to attitude motion 
without affecting the orbital motion. Actually, as shown by Beletskii (Reference 9), the relative 
magnitudes of the appropriate t e r m s  make this a reasonable approximation. 

The next assumption is that the equations can be linearized when applied to small-angle motion. 
The linearized equations fo r  roll and yaw do not involve terms in the pitch motion, and vice versa; 
pitch motion may be considered independent of roll-yaw motion. 

The coupled roll-yaw equations are homogeneous for both circular and eccentric orbits, and 
there is a solution with e = = IC, = = 0 for  either case. This chapter and Chapter 3 a r e  concerned 
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with the equation describing pitch motion under the assumption that the roll and yaw variables a re  
identically zero. Thus the exact problem is reduced to consideration of the single linear second- 
order differential equation for pitch motion, with the orbital parameters known functions of time. 

In this chapter the equation for pitch libration will be formulated in several  different ways. 
The variations originate from the different choices of reference frame and independent variable, 
even when the problem is restricted, as discussed above. Each of the formulations is limited to 
exclude terms higher than first order  in eccentricity, and the resulting equations a re  transformed 
into the canonical form of Mathieu's equation. The nature of solutions to Mathieu's equation is well 
known and regions of bounded and unbounded motion for the pitch libration a r e  determined from 
these known solutions. 

Chapter 3 presents a somewhat more general approach to the same pitch libration problem. 
The equation is limited to exclude terms higher than third order in eccentricity, and the asymptotic 
methods of Krylov, Bogoliubov, and Mitropolsky a r e  used to obtain regions of bounded and un- 
bounded motion. 

Equations of Motion 

The linearized equations of motion for a rigid, gravity-stabilized spacecraft moving in an ec- 
centric orbit a r e  well known. In the notation of this dissertation they a re :  

r z  G t ( I -  T, ) ( ; '  + 3)8 - ( 1 -  r z  - r , )  ;i = o , 

and 

When a circular orbit is assumed, these equations become: 

and 

One solution of this set of equations is & = = + = 0, and this solution can be shown to be a stable 
one for  any values of r ,  and r2  in the "Lagrange" or  "Delp" regions as shown in Figure 2-1 (after 
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Debra). Pringle (Reference 16) has demonstrated, by application of Liapunov's second method, 
that spacecraft in the Lagrange region a r e  stable only if there is any form of pervasive energy dis- 
sipation in the system. Therefore there a re  no practical spacecraft whose parameters f a l l  in the 
Delp region, and this region will not be considered in the remainder of the dissertation. 

In much the same manner, 0 = 4 = 0 is a solution of the two linearized roll-yaw equations for 
motion in an elliptic orbit. It is true that this solution cannot be proven stable throughout the entire 
Lagrange region. Nevertheless, a number of authors (e.g., Baker (Reference 4), Schrello (Ref- 
erence 5), Beletskii (Reference 8), Moran (Reference 17), Schecter (Reference 18), etc.) have con- 
sidered variations of the problem in which roll and yaw a r e  assumed zero and only pitch motion is 
considered. This c lass  of motion is commonly referred to as the "in-plane (or planar)'' pitch- 
motion problem. 

Chapter 5 shows that for some portions of the Lagrange regions it is incorrect to assume: 
(1) that the equations can be linearized for small-angle motion, or  (2) that A = 3 = 0 is a stable 
solution to the roll-yaw equations. However, a number of interesting points can be observed by 
investigation of pitch subject to these restrictions; both this and the next chapter a r e  devoted to 
such an analysis. 

The previous equations a r e  obtained in Appendix A by starting with an exact formulation of the 
problem and introducing simplifications into the equations. A different approach to the same result  
would be to write exact equations for a simplified problem; this would help in visualizing the effect 
of a change in reference systems from the local-vertical to the mean-vertical system. 

Consider a spacecraft moving in an eccentric orbit (Figure 2-2) and subject to a torque 7 given 

by 

or, since 

therefore 

( v -  

The angular momentum of the spacecraft about its center of mass  is either I, (6 + 6 )  or I, (4' + M) 

depending on the choice of reference frame. Thus when the rate of change of angular momentum is 
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equated to the applied torque for motion referenced to the local-vertical frame, the result is 

Similarly, when the motion is referred to the mean-vertical frame the result is 

.. 3P, 

r 3  
4 '  t - ( r 2 -  w]  0 ;  

this is the equation studied by Baker (Reference 4). 

Both Equations 2-1 and 2-2 a r e  written with time as the independent variable. An alternative 
formulation in which the independent variable is changed to the true anomaly is of interest. The 
change of independent variables is accomplished by noting that 

and from celestial mechanics (see Appendix A) 

and 

e s i n v  . 
r 3  

Thus Equation 2-1 becomes, after some simplification, 

(2-3) 
d 2 ?  2 e s i n v  dd 3 ( r 2 - r 1 )  2e s i n v  
dvz 

- - 
1 + e c o s v  a; + r+ e cos v h i-+ e cos v . 

There is a standard transformation that removes the first derivative term in an equation of this 
form. Let 

@(v) $(v)  (1  + e  cos v )  
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Then 

and Equation 2-3 becomes 

d2@ + 3(rz - r l )  + e  c o s v  

dv 
~ 1 e cosr @ = 2e s i n  v (2-4) 

This is the form of the equation that has been studied by Beletskii (References 7, 8, and 9). 

At this point in the analysis, Equations 2-1, 2-2, and 2-4 represent three different formula- 
tions of a single problem, and each is a second-order differential equation with non-constant coef- 
ficients. The radius vector and true anomaly of a particle in an elliptic orbit in an inverse-square 
force field can be expressed as a function of the mean anomaly. Moulton (Reference 19) gives these 
functions as 

1 e 2  7 ( c o s 2 M - l ) - . ' *  

and 

v = M + 2e sinM f 5 e 2 s i n 2 M  

and, for small e ,  

1 - 3  

e 2  
pLe r - 3  [I- e c o s M -  1 ( cos  2M- 1 ) -  * * .  

= 1 f 3 e c o s  t 

and 

* *  - v - - 2e s i n t  , 
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Thus, to first order in e, Equations 2-1 and 2-2 become 

dz 4 - +  d t  3 ( r 2 - r l ) ( 1 t 3 e c o s t ) 4  = 2 e s i n t  

and 

~~ d 2 d '  + 3 ( r 2 - r l ) ( l + 3 e c o s t ) q 5 '  6 e ( r 2 - r l ) s i n t  . 
d t  

Similarly, to first order in e ,  

3 ( r ,  - r , )  + e  c o s v  
__ 1 + e cos v = [ 3 ( r 2 - r l )  t e c o s v ]  [ 1 - e c o s v + e 2 c o s 2 v -  ..*I 

- 
- 3 ( r 2 - r l ) +  [ 1 - 3 ( r 2 - r l ) ] e c o s v  , 

and Equation 2-4 becomes 

3 d 2 Q  + { 3 ( r 2 - r , ) + [ 1 - 3 ( r 2 - r  

(2-5) 

(2-7) 

Reduction t o  Canonical Mathieu Form 

Each of the three formulations of the preceding section leads to a nonhomogeneous, linear, dif- 
ferential equation with periodic coefficients. Although in general there is no analytic method for 
obtaining solutions to this broad class of equations, a number of particular cases have been ex- 
haustively studied. One of the better known examples is Mathieu's equation. It is possible to trans- 
form each of Equations 2-5, 2-6, and 2-7 into the canonical form of Mathieu's equation by a suitable 
change of variables. The solution to this equation is well known and gives the solution to the pitch- 
motion problem. 

Historically, the equation was first studied by Mathieu (Reference 20) in conjunction with the 
vibration of elliptical membranes. McLachlan (Reference 21) has reviewed the general theory of 
Mathieu's equation, and its application to the analysis of loud speakers, frequency modulation, prop- 
agation in wave guides, oscillatory systems with periodic disturbances, etc. A point of interest is 
that the linear variational equation used in evaluating the infinitesimal stability of solutions to non- 
linear differential equations frequently has the form of Mathieu's equation; see Stoker (Refer- 
ence 22) and Cesari (Reference 14). 
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McLachlan gives the canonical form of Mathieu's equation as 

+ ( a -  2qcos  2 z ) y  = 0 . d> 
dz 

The substitutions 

22 = t ,  

a = 1 2 ( r ,  - r l )  , 

and 

q = - 18(r ,  - r l )  e 

transform Equations 2-5 and 2-6 to 

+ ( a -  2qcos 2 z ) +  = 8e s i n 2 2  
d 2  
d z 2  

and 

d2'' ~- + ( a -  2qcos 22)&'  2 4 e ( r 2  - r l )  s i n 2 2  
dz  

The substitutions 

and 

2q = ( a - 4 ) e  

transform Equation 2-7 to 

d 2 Q  + (a- 2qcos  2 z ) Q  = 8e s i n 2 2  
dz 
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The effects of the choices of independent variable and reference system could be determined 
even before these transformations were completed. A comparison of Equations 2-5 and 2-7 in- 
dicates that the choice of independent variable affects the periodic par t  of the homogeneous equa- 
tion but not the forcing function. The homogeneous equations differ for two reasons: first, the de- 
pendent variable is expressed as a function of v instead of t, and second, the dependent variable is 
changed from cp to @ by a time-varying transformation. Similarly, comparison of Equations 2-5 and 
2-6 indicates that the choice of reference frames affects the forcing te rm but not the homogeneous 
equation. In Equation 2-5 the forcing term is a result  of the acceleration of the reference system, 
while in 2-6 it is due to the torque which would exist on a perfectly oriented (4’ = 0) spacecraft 
since the mean vertical is not a zero-torque axis. 

When the eccentricity, e ,  is zero, the true and mean anomalies a r e  identical and there is no 
difference in the formulas-Equations 2-9, 2-10, and 2-11-resulting from the three approaches. 
There is an interesting difference when r 2  - r l  = 1/3, Le., a = 4, for any non-zero value of e. The 
homogeneous part  of Equations 2-9 and 2-10 have an unstable solution in the neighborhood of the 
line a = 4, as shown in the next section. However, Equation 2-11 is reduced to a constant coeffi- 
cient harmonic oscillator when a = 4, since q = 0 in that case. The difference is caused not by 
the change of independent variables from t to V ,  but by the change of dependent variable from 4 to 
@. The latter transformation removes; to the first order  in e ,  the resonant te rm corresponding to 
1 + e COS v that causes Equations 2-9 and 2-10 to be unstable. 

The complete solution of a general second-order, linear, nonhomogeneous differential equation 
can be written as the sum of two linearly independent solutions of the homogeneous form of the 
equation and any particular solution of the nonhomogeneous equation. The homogeneous par t  of 
Equations 2-9, 2-10, and 2-11 is identical with the canonical form of Mathieu’s equations; thus the 
nature of the complementary solutions is well known. 

There is a general result from Floquet theory (Struble, Reference 13) which says that any solu- 
tion, y ,  of a linear differential equation with continuous periodic coefficients of period T can be 
represented as 

where P ( Z )  is periodic with period 7. If Y ( Z )  is a solution of Equation 2-8, so is Y ( - z ) ;  thus the 
complete solution can be expressed as 

(2-12) 

It is apparent f rom Equation 2-12 that the solution to Equation 2-8 is stable i f  and only if p is 
a pure imaginary number. The form of p, real, imaginary, or complex, is a function of the parameters 
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a and q. It is possible to plot the regions in which p is real  or imaginary as a function of these 
parameters; such a plot indicates regions in which the solutions to Equation 2-8 are bounded and 
those in which the solution is unbounded. 

The stability of the complete solution of any of Equations 2-9, 2-10, or  2-11 requires that both 
the complementary solution and the particular solution of the equation are bounded. That is, for 
stable motion it is necessary but not sufficient that the parameters a and q yield a bounded solu- 
tion to Equation 2-8. 

The range of the parameters a and q for this application is restricted by the physical nature 
of the problem. Only spacecraft whose inertia range is in the Lagrange region will be considered; 
thus, 0 < r < r 2  < 1. The orbital eccentricity must lie in the range 0 .s e < 1 for a closed orbit; how- 
ever, it would be wrong to use these bounds in determining the range for 9. All three formulations 
contain series expansions in which te rms  of second order and higher in e are dropped; this implies 
e << 1. If e << 1 is taken as e < 0.1, the range of q can be limited to -1.8 < 0 for the first two for- 
mulations and -0.2 < q < 0.4 for the last one. A second limit exists, since when e exceeds 0.6627 - - - 
the ser ies  developments for r and v used in formulating Equations 2-9 and 2-10 a re  not convergent, 
although the expansion for Equation 2-11 is not so restricted. Thus a range of 0 I a 5 12 for all 
three equations, -12 < q 5 0 for  Equations 2-9 and 2-10, and -2  < q < 4 for Equation 2-11 completely 
covers the admissible range of parameters. 

Figure 2-3 shows the regions of bounded and unbounded solutions, mapped from the numerical 
data in Reference 23.* The regions a r e  symmetric about the a axis; thus it is sufficient to plot 
only the absolute value of q to represent the range determined above. In using this figure to eval- 
uate the stability of the solutions of Equations 2-9, 2-10, or  2-11 it is necessary to convert the 
parameters r - r 

version from ( r z  - r l ,  e )  to (4. a )  is not the same for Equation 2-11 as it is for Equations 2-9 and 
2-10, and neither of the sets of conversions is linear in the variables r 2  - r l  and e. These two facts 
make it difficult to "see" the effects of changes in the physical parameters r 2  - r l  and e,  and obscure 
the differences resulting from the choice of independent variables. To avoid these difficulties the 
regions of bounded and unbounded motion a r e  also demarcated with respect to the physical param- 
e te rs  r 2  - r l  and e in Figures 2-4 and 2-5. Figure 2-4 is applicable to both formulations that re- 
tain time as the independent variable, (Le., Equations 2-9 and 2-10); Figure 2-5 corresponds to the 
choice of true anomaly for independent variable (i.e., Equation 2-11). 

and e to the parameters a and q by the appropriate transformation. The con- 

These figures differ in two respects: first, there is a region of unbounded motion beginning 
at r z  - r l  = 1/3, e = 0 in Figure 2-4 but not in Figure 2-5; second, the boundaries of the unstable 
regions beginning at r 2  - r l  = 1/12, e = 0 and r 2  - r l  = 3/4, e = 0 differ markedly between the 
two figures as e increases. In the previous section, the first of the two differences was attributed 
to the transformation q v )  = +(v) (1 + e C O S  V )  which removes, to the first order in e, the resonance 
te rm that produces this region of instability. The instability is, of course, still present, but it can- 
not be shown with a solution to the first order in e such as is determined herein. The second 

*The lines on the figure should be thought of a s  lines of demarcation, for regions where a given value (q, a )  is unstable. 
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f difference is a more obvious result of discarding higher-order terms. When the boundaries a r e  
compared for e << 1 they are quite similar. 

It has already been noted that it is necessary to consider also the particular solutions of Equa- 
tions 2-9 through 2-11 before deciding that a given combination of parameters is stable. The im- 
portance of this can be seen by considering the case r 2  - r l  = 1/3, 0 < e < 1, which is frequently 
called the "linear pitch resonance case.!' With these parameters, Equation 2-11 becomes 

d 2  0 
dz 

+ 40 = 8e s i n 2 2  ~ 

- 

which is the equation of a linear oscillator forced at its resonant frequency. Thus the solution of 
Equation 2-11 is clearly unstable when r 2  - r l  = 1/3 for any non-zero value of eccentricity. This 
is indicated by a dashed line in Figure 2-5. Particular solutions of Equations 2-9 and 2-10 may 
also be unstable in this region but, since the complementary solution is already known to be un- 
bounded, it is not necessary to pursue this aspect of the problem. 

Figures 2-4 and 2-5 and the above discussion show that there a r e  three regions of unstable 
pitch oscillation for any non-zero eccentricity, however small. These regions reduce to values of 
r 2  - r l  equal to 1/12, 1/3, and 3/4 as e approaches zero. When these values of r 2  - r l  a r e  sub- 
stituted in the linearized equation for pitch motion in a circular orbit, it can be seen that r - r 

= 1/12 corresponds to a pitch libration with a natural frequency of one-half cycle per  orbit. Sim- 
ilarly, r 2  - r l  = 1/3 and r 2  - r l  = 3/4 correspond to natural frequencies of one and three-halves 
cycles per orbit, respectively. 

Damping 

The question of stability can be determined for a rigid spacecraft by knowing whether the value 
of / L  corresponding to a given s e t  of parameters (4, a )  is real  or imaginary. A specific set of 
parameters actually determines the numerical value of p and thus the rate of divergence of the 
pitch motion, when the point ( q ,  a )  is in an unstable zone. This rate of divergence becomes im- 
portant when the effects of energy dissipation (i.e., damping) a r e  considered. 

A rigid spacecraft moving in an inverse-square gravitational force field is not subject to damp- 
ing. In order to model damping correctly it would be necessary either to consider a multiple-body 
spacecraft o r  to include other sources of torque such as reaction with the magnetic field. This is 
beyond the scope of this dissertation; however an idealized velocity-dependent damping term can be 
inserted in Equation 2-1, without physical justification and solely to obtain a "feeling" for the effect 
of damping. Thus, we consider the equation 

d4 3/., .. + 2~ + - ( r 2 - r l ) +  = - v . 3 
d t  r 3  

(2-13) 
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When the expansions and simplifications of the second and third sections of this report  are applied 
to Equation 2-13, the final result  (which is analogous to Equation 2-9) becomes 

where, as before, 

g5 = p i t c h  angle  , 

z = 2 t ,  

a = 1 2 ( r 2  - r l )  , 

and 

8e s in  22 , 

q = - 18( r2  -.,)e . 

The first derivative te rm can be removed from Equation 2-14 with the substitution 

Y(Z) = 4 ( z )  exP(2KZ) 

(2-14) 

(2-15) 

which converts Equation 2-14 to 

In this case the stability of the complementary solution to Equation 2-16 can be ascertained from 
the nature of the region surrounding the point ( q ,  a -  4K2) in Figure 2-3. Once the solution y ( z )  is 
known, the pitch motion is determined from the inverse of Equation 2-15 as 

Thus, if y (  Z )  is in a stable region, then the complementary pitch solution is asymptotically stable. 
However, when the complementary solution to Equation 2-16 is divergent, it does not necessarily 
follow that the pitch motion is also divergent. In this case the solution to Equation 2-15 has the form 
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The pitch motion is therefore asymptotically stable, with damping, whenever lpI < 2 K  . Values of 
a r e  mapped with regard to e and [3 ( r 2  - r , )  - K ~ ]  l / 2  in Figures 2-6, 2-7, and 2-8, which are based 
on Reference 24. These charts differ from Figure 2-4 in two respects; first, each chart  is ap- 
plicable only to a portion of the parameter space; second, the vertical coordinate represents the 
frequency of oscillation of the solution to Equation 2-13 for a circular orbit. 

The process of determining stability for the complementary solution to Equation 2-14 can now 
be reduced to an automatic process. First, given the parameters r ,, r2 ,  e ,  and K ,  find [3(r2 - r,) -K2]1 ’2 ;  

then, determine the value of p from the appropriate figure for the point ( e ,  [3 ( r ,  - r , )  - K 2 ]  l/,). The 
complementary solution is asymptotically stable if  p < 2 ~ ,  periodic if p = 2 K ,  divergent if p > 2 K .  

Thus the complementary solution to the in-plane pitch-motion equation can be asymptotically stable 
even for those combinations of e and r 2  - r l  that are divergent according to Figure 2-4. Figures 2-6 
through 2-8 show that p increases directly with increasing e ,  and thus the amount of damping needed 
for stable motion also increases with increasing orbital eccentricity. 

The complete solution to Equation 2-14 consists of the sum of the complementary solution and 
any particular solution of the nonhomogeneous equation. Although the above analysis indicates that 
all of the regions of instability previously found for this equation can be eliminated by damping, it 
does not guarantee that the particular solution introduces no instabilities. However, the particular 
solution to this  equation is analogous to the forced motion of a damped harmonic oscillator, and, a s  
is shown in the next chapter, the forced response (or particular solution) is a bounded, slightly 
perturbed, sinusoidal oscillation, except when r ,  - r ,  = 1/3. 

Conclusions 

The motion of a gravity-gradient-stabilized spacecraft in an elliptic orbit differs in kind from 
the motion of the same spacecraft in  a circular orbit. It is not correct  to assume that the only im- 
portant effect of eccentricity is to add a forcing te rm to the constant-coefficient equations for a 
circular orbit. Actually, it is also necessary to include the periodic variation in the gravity- 
gradient restoring torque caused by the change in orbit radius with position for an elliptic orbit. 

A rigid gravity-gradient spacecraft moving in a circular orbit has a stable position of equilib- 
rium, when the principal axis of least  inertia is aligned with the local vertical, and the principal 
axis of maximum inertia is aligned with the orbit normal. This can be expressed in the notation of 
this dissertation by a requirement that 0 < r l  < r 2  < 1; the portion of parameter space satisfying 
this requirement is called the Lagrange region. When an elliptic orbit is considered, this stability 
criterion is no longer sufficient. In fact, three a reas  of parameter space in the Lagrange region 
a re  unstable in pitch even for  very small  eccentricities. As eccentricity approaches zero, these 
three regions correspond to a spacecraft with a libration frequency for a circular orbit of one- 
half, one, or three-halves cycles pe r  orbit, respectively. 

The equation describing in-plane pitch motion can be developed in a number of ways. The 
formulations of Beletskii (Reference 8) and Baker (Reference 4) are compared with a third formu- 
lation that has time for an independent variable, as did Baker, but relates the motion to the local 
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vertical, as did Beletskii. The regions of unbounded pitch motion a re  mapped with regard to the 
inertia parameter, r 2  - rl, and orbital eccentricity, e ,  for each of the formulations. All  three ap- 
proaches lead to equations that a r e  unstable when r 2  - r = 1/12, 1/3, and 3/4, for all non-zero 
values of e .  The unstable regions expand in size with increasing eccentricity; Figures 2-4 and 2-5 
map the regions of unstable motion with regard to eccentricity, e, and the inertia difference, r - r 1. 

When the spacecraft parameters and orbital eccentricity a re  in one of the unstable regions, the 
pitch motion consists of exponentially increasing quasi-periodic oscillations. The rate of expo- 
nential growth, p, is determined by the parameters r 2  - r l  and e; Figures 2-6 through 2-8 plot lines 
of constant p with regard to these parameters. Energy dissipation in the form of velocity-dependent 
damping of sufficient magnitude can suffice to eliminate all the instabilities discussed above. The 
magnitude of the damping coefficient, K ,  required to stabilize the motion of a particular spacecraft 
increases directly with increasing values of e.  
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CHAPTER 3 

PLANAR PITCH LIBRATION-ASYMPTOTIC EXPANSION THEORY 

Introduction 

There are several approaches to analyzing a motion when the equations describing it a r e  not 
easily solved. The most common approach is to consider an equation which is "nearly the same 
as" the equation of interest but whose solution is known. The suitability of this approach is de- 
termined by the nature of the approximations required to reduce the original equation to the form 
of an equation with a known solution. In Chapter 2 it was  necessary to discard terms of order e' 

and higher in the expansions of r and v as functions of t ,  and for the most part only the solution to 
the homogeneous portion of the equation was  discussed. 

A second approach is to obtain an approximate solution to the specific equation being studied. 
This chapter presents a solution to the in-plane pitch-libration problem in t e rms  of asymptotic 
expansions in powers of a small parameter ( e ) .  This method permits inclusion of terms to any 
desired order in e (although it will be shown that inclusion of terms of order e4 and higher does 
not introduce new phenomena), and leads to the development of a particular solution of the non- 
homogeneous equation as well as inequalities defining regions where the solution of the homogene- 
ous equation is unbounded. 

An asymptotic solution to the in-plane pitch problem with true anomaly as the independent 
variable was developed through the second approximation by Beletskii (Reference 8). He obtained 
a particular solution of the nonhomogeneous equation, similar to the first terms of the solution 
found herein (subject to the difference in variables). He also noted the existence of the first 
resonant zone, and the linear resonance for the particular solution derived herein. However, in 
his formulation it is necessary to consider the third-order solution (which has not been done) to 
find the second and third resonant zones developed in this chapter. 

Equation of  Motion 

This chapter, also, is concerned with the linearized equation representing in-plane pitch mo- 
tion of a rigid gravity-gradient spacecraft moving in an elliptic orbit. The equation is 
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where 

r = r ( t )  

and 

v = v ( t ) .  

Expansions of ( a / r ) 3  and V - M  in ser ies  involving powers of e and the mean anomaly a r e  given by 
Cayley (Reference 25) through t e rms  of order e’. The first t e rms  in these expansions are: 

3e2 15e4 9e 
t 3e c o s t  + 2 cos 2t 

77 1 27 53 7 
+ e3 [T cos t + s cos 3t] t e4 [T cos 2t + -g cos 4 t  

and 

l3 1 5 
v = M + 2e sin t t 7 e2 sin 2 t  t e3 [- + sin t + 12 sin3t 

+ e4 [- sin 2 t  + 96 s i n 4 t  * I 
With the aid of these two expansions, and with the substitutions 

Equation 3-1 can be written as 

9 t {u: +;: [3e cos t t 2 cos 2 t  + e3 cos t + 8 cos 3t 
9e 

d t  

77 
= 2e sin t + 5e2 sin 2t 

103e4 e3 39e3 l i e 4  
- 4 sin t + 7 sin 3t - 7 sin 2t + 7 sin 4 t  . (3-2) 
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1 
As in Chapter 2, this is a nonhomogeneous linear second-order differential equation with periodic 
coefficients. Its total solution is composed of any particular solution to  the nonhomogeneous equa- 
tion plus the complementary solution to the associated homogeneous equation. 

Asymptotic Solutions 

Although Poincare wrote the initial discussion of asymptotic expansions in powers of a small 
parameter, the method used herein was developed by Krylov and Bogoliubov (Reference 26) and in 
more detail by Bogoliubov and Mitropolsky (Reference 27). Appendix C presents a particular set 
of formulas that specialize and extend the approach of Reference 28 to include third- and fourth- 
order t e rms  for an equation of the form 

The development is routine; readers interested in the underlying theory o r  a more detailed dis- 
cussion should refer to Bogoliubov and Mitropolsky. 

In essence the method reduces the solution of Equation 3-3  to a set of simpler problems. Spe- 
cifically it seeks to find functions 

such that 

(3 -4) 

where 

da 
d t  - 
_ -  

* + em Am ( a )  

and 

satisfy Equation 3-3 to order e m + l .  When there is a resonance between the perturbing expressions 
and the natural frequency w of the unperturbed system, the problem is restated to find functions 
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such that 

where 

da 
d t  = e A l ( a ,  0) -t + emAm ( a ,  0)  - 

and 

dO 
d t  - 
_ -  

-t e m B m  (a. 0 )  

satisfy Equation 3-2 to order e m + '  for parameters in which c2 

a r e  referred to as the "nonresonance case" and the "resonance case," respectively. 
( p / q ) , .  These two formulations 

The following section develops a solution to Equation 3-2 for the nonresonant case; it will  
serve as a particular solution to the nonhomogeneous equation. Examination of this solution will 
also reveal the values of cL' at which resonance occurs. This is followed by a section that develops 
inequalities that determine when the resonant solution to the homogeneous equation associated 
with Equation 3-2 is unbounded. These inequalities a r e  plotted in a form similar to that of Chap- 
t e r  2. 

A Particular Solution t o  the Pitch-Libration Problem 

When Equation 3-2 is expressed in the form used in the method of asymptotic solutions, the 
result is 

where 

2 s i n t  - 3 Y 2 ( c o s t ) b . .  

9;2 
5 s i n 2 t  - 7 (cos 2 t ) d : ,  

I .  39 . _ -  s i n  t -t 7 s i n  3t - __ ?7f2 cos t -t 8 5 3 2  cos 3t 
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and 

The formulas which a r e  used in obtaining asymptotic solutions to equations of this type a r e  
developed in Appendix C. In essence Equation 3-4 is substituted in both sides of Equation 3-6 and 
t e rms  of the same magnitude in e a r e  collected. The first order terms give 

where 

F, = f ,  ( a c o s Y ,  t )  

and as explained in the appendix this equation can be solved for A , ,  B,, and u,. These results can 
then be used to expand similar equations for F a ,  A,, B, and ti2 and the process can be continued 
to any desired order. The computations a r e  rather tedious and only a few of the intermediate r e -  
sults a r e  included in the remainder of this section. 

In the first approximation, 

A, ( a )  0 .  

B, ( a )  0 ,  

and 

The first-order solution to Equation 3-6 is 

.6 = a c o s Y ,  
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where 

In the second approximation 

- c o s y -  y [(lt 9aZ4 
F, [5- 51 s i n  2 t  - 2 (1 - k?) 

A, 0 ,  

and 

1 

The second-order solution to Equation 3-6 is thus 

where 

da 
d t = O  

and 



In the third approximation 

F3 = g1 s i n  t + g, s i n  3t - a  g, cos  ( t  +I) + g, COS ( t  - Y )  + g, COS (3t +I) + g, COS (3t -Y ) ]  , 

A, = 0 ,  

B, = 0 ,  

and 

g , c o s ( t + Y )  g , c o s ( t - Y ' )  g 5 c 0 s ( 3 t + Y )  g6COS(3t -Y)  

+ a  [ i+k ,  + - - - i - 2 w 3  + 3 ( 3 - % , )  9 1 g, s i n  t g, s i n  3t - _ _ _ _  
u3 - w 3 2 - 1  + LJ;-9 

where 

1 9 2  - .~ g, ~ - 
- 2 ( , 4  - 1) - 2 ( 4  - 4 )  

2 ( 4  - 1) - 2 ( 4  - 4) 
39 9 2  

g, = 4 -  

- -  272, 27Z4 272, 27z6 
g3 - 16 ' 3 2 ( 1 + u 3 )  (1 ' %) ' 8(1-2w3) - 4...3(1-k;) (e) 3 

The third-order solution to Equation 3-6 becomes 



where 

da 
dt - 
_ -  

and 

9e2 2 4  dY _ -  dt - w 3  t ___--- - 
4w, (1 - 4‘232) 

As the order increases it becomes harder to find a solution. However, examination of each of 
the three preceeding solutions-Equations 3-7, 3-8, and 3-9-indicates that each new approximation 
introduces a significant new result. In particular, u1 has an unbounded term when a 3  = 1/2, u, 

when “, = 1, and U ,  when o 3  = 3/2. However, further approximations do not produce further 
meaningful discrepancies. In particular, the fourth approximation introduces new terms of the 
form 

h, cos ( 4 t  -Y) e 4  h, ___ s i n  4 t  “4 8 ( 2 - , z 3 )  I +  u,’ - 16 

+ fourth-order corrections to t e rms  found before, 

and 

A, = 0 

B, = e4  h, , 

where h i  ( i  = 1, 
ever, since 0 < .,’ < 3 for small e ,  the terms in u4 a r e  bounded and there is no need to consider 
them further. 

- , 4) a r e  constants that could be evaluated with Appendix B formulas. How- 

Instead, return to the third-order approximations. Since da’dt = 0 for all U ,  a particular solu- 
tion to Equation 3-6 is 

R 2  
s i n  t + ___ 

(<,’- 1 
.,’- e 2  4 ( i-T:y) s i n 2 t  + e3 .,,’- 9 

2e 
s i n  t + __- m = ~~ 

This solution represents the motion of a spacecraft for the particular case in which a. = 0. It 
also approximately represents the forced motion of a rigid spacecraft in an eccentric orbit when 
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"light damping" is present. Equation 3-10 is a particular solution to the nonhomogeneous Equa- 
tion 3-6. In the next section the solution to the homogeneous equation associated with Equation 3-6 
will be found for each of the regions w3 2 1/2, w 3  - 1, and m3 * 3/2. The combination of these com- 
plementary solutions and the particular solution, Equation 3-10 is sufficient to determine completely 
the nature of the solution to Equation 3-6 in the region of interest. 

i 

Regions of Resonant Pitch Motion 

An asymptotic solution to the in-plane pitch-libration problem w a s  developed for the non- 
resonance case in the previous section. This solution represented unstable motion for ai3 = 1/2, 
1, or 3/2, which indicates that a resonance-case type of solution such as Equation 3-5 should be 
used in these regions. The process is quite similar to that of the preceding section, in that solu- 
tions a r e  built up with t e rms  of increasing order of approximation. 

It w a s  shown in the previous section that the first  three approximations introduce all the  reson- 
ant phenomena of interest for this problem. Fourth-order t e rms  a r e  therefore ignored in this 
dissertation. 

The homogeneous part  of Equation 3-2 can be written to the third order in e as 

where 

f - 3z2 ( C O S  t )  @ , 

9 2  
f ,  = - 2 (cos 2 t ) . t  , 

and 

(3-11) 

Solutions of Equation 3-11 will be developed for (d3 %1/2, 1, and 3/2; as before, most of the algebra 
will be omitted. The first series of solutions wil l  assume u3 2 1/2, and define a,' - 1/4 = eA.  In the 
fir st approximation, 

- 3 a 2  
F, = -2 [ c o s ( t t Y ) + c o s ( t - Y ) ]  , 
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?h3  
A, = 7 a s i n 2 0 ,  

3 2  
B, = 2 cos  2 0  + a ,  

and 

3aZ2 
u1 = 4 cos ( t  + Y )  

Then, in the first  approximation, 

where 

da 3er2 
d t  - 2 a s i n 2 0  , 

(3-12) 

(3-13) 

and a is not a constant. When new variables u = a cos 0, v = a s i n 0  a r e  introduced into Equation 
3-13 and 3-14, the system 

dv 
d t  - 

results. This can be reduced to either 

or 
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I Both u and v a r e  represented by unbounded oscillations when 

(3-15) 

and, since a = [u' t v ~ ] ~ ' ~ ,  inequality 3-15 is also a condition for unbounded oscillation of 4. 

A more exact boundary can be found by considering the second approximation, in which 

F, = - 8 9a24 cos Y + 2 3aG2 c o s ( t + Y ) - q [ ( l  t q ) c o s ( 2 t t Y )  t 

A, = 0 ,  

and 

3ea2' 
a cos (+ + 0) + 7 cos (% t 0) , (3 -1 6) 

where 

da 3ez2  
d t  - 2 a s i n 2 0  , 
_ - _ _  

The same process that was used in the first approximation indicates that Equation 3-16 represents 
unbounded motion whenever 

(3-17) 

It is possible to refine the boundary of the unstable region near (23 = 1/2 still further by consider- 
ing higher -order approximations, but the gain is small. 

The unbounded motion for u3*1 appeared in the second-order approximation (Equation 3-8) to 
Equation 3-2 and will likewise only be apparent in the second-order resonant solution. In this case 
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oj is newly one; Le., eA = u: - 1, and, in the first approximation. 

sa;' 
Fl = -- 2 ~ o s ( t + Y ) + c o s ( t - Y ) ]  . 

A, = 0 ,  

4 
B, 2 .  

a;' 3aZ2 
u 1  = 2 c o s ( t + Y ) -  2 c o s ( t - ' Y ) .  

and 

6 = a cos ( t  t o ) ,  

where 

Thus, in the first approximation the amplitude of the oscillations remains constant. This is not the 
case when the second approximation is considered, for 

3a>' a K 2  3 a C 2  
F, = ~ C O S Y + - ~ - - C O S ( t + Y ) +  T c o s ( t - T )  

9 2  
A ,  = 8 (I-;*) a s i n m  , 
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and 

ae;‘ 
@ = a c o s  ( t  + 0 )  f 7 COS ( 2 t  t o )  

where 

This set of equations represents unbounded motion if  

(3-18) 

(3-19) 

This boundary can also be more precisely defined by considering the third approximation, in which 

5 
A, 8 a s i n 2 0 ,  

and 

9ae32$ (1 t %)COS ( 3 t  +@) , (3 -20)  = a c o s ( t + O )  + 3 a e z  2 ( z : - l ) c o s ~ +  a e 2  - F ( ~ - ~ : ) c o s ( ~ ~ + o )  t 
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where 

da 9e2 Z2 _ -  d t  - 8 [ 1 - ~ 2  t z j z ( w ?  - I)] a s i n m ,  

w,' - 1 (&; - 1 ) 2  (w; - 1)3 3 e ~  ;j4 1 l e z  ;j4 
_ -  dO - 8 ' 1 6  - t T ( w J 2 - l ) .  

The motion represented by Equation 3-20 in the regionw,%l is unbounded when 

L,' - 1 (u: - 1 ) 2  (w: - 1)3 Se2 ;4 l l e 2  2 4  
t 7 - -  t- 8 (w,' - ') 

(3-21) 

The last region to be considered is in the vicinity w3s3/2. The existence of this unbounded 
motion was indicated only in the third-order approximation solution, Equation 3-9, and that is also 
true when the resonant solution is developed. In this case en = u," - 9/4 and, in the first 
approximation, 

3aZ2 
F, = -- 2 [ c o w  + Y )  + c o s  ( t  - Y ) ]  , 

A, = 0 ,  

and 

where 

- 
"1 - 

3aZ2 8 c o s ( t + Y ) -  

4 = a cos (% t .> , 

3aZ2 4 cos ( t  - 
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F 

where 

da x = o  

and 
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Thus even in the second approximation there is no sign of the resonance. However, in the third 
approximation, 

and 

9ae2 Z’ 
cos (2 + 0) - -40 (1 4 y) cos f; + @) 

- %‘* (1 - $) COS ($ - 0) , (3-22) 
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where 

This system of equations leads to unbounded oscillations whenever 

(3-23) 

It would be necessary to consider the fourth-order approximation if  a more precise boundary of 
this region of unstable motion was desired. 

The above analysis has  shown that there a r e  three regions in which the solution to the homo- 
geneous equation related to the linear pitch libration problem represents unstable motion. 
3-1 demarcates these regions in which this occurs, with respect to r 2  - r l  and e. 

Figure 

Both th is  and the previous chapter have been concerned with the linear, in-plane, pitch motion 
of a rigid gravity-gradient spacecraft in an eccentric orbit. The most important result of both 
chapters is the demonstration that stability cr i ter ia  developed for circular orbits cannot be ex- 
trapolated to even slightly eccentric elliptic nrbits. 

It is known that the linear equation describing the attitude motion of a gravity-gradient- 
stabilized spacecraft has a stable equilibrium in the circular-orbit case when the inertia param- 
eters are in the Lagrange region, (i.e., when 0 < r l  < r 2  < 1) .  Actually this region produces motion 
asymptotically stable at the equilibrium when there is "pervasive damping," no matter how small 
the damping is (Pringle, Reference 16). Neither of these conclusions is valid for a non-circular 
orbit, no matter how small  the eccentricity. In fact, there may be divergent oscillations for some 
inertia combinations even with light but pervasive damping. 
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Figure 3-1 -Regions of instability for asymptotic expansions. 
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These instabilities can be attributed to two causes. First, there is the forced response due to 
the non-uniform orbital rate. 
the equations of motion to be nonhomogeneous. Equation 3-10 shows the nature of the forced re- 
sponse; evidently the only important instability occurs when w 3  = 1 (i.e., when r 2  - r l  = 1/3). This 
same equation also indicates the steady-state behavior of a lightly damped spacecraft, except in the 
regions of parametric resonance. 

This enters the equations as a forcing term (Equation 3-1) and causes 

The second effect of orbital eccentricity is that the radius vector to the spacecraft, and thus 
the restoring torque, varies with time. This' causes the equations of motion to have periodic coef - 
ficients and leads to a phenomenon called "parametric resonance." When u; 2 1/2, 1, or 3/2 (Le. , 
when r z  - r l  1/12, 1/3, o r  3/4), the amplitude of the pitch oscillation may increase without bound, 
to the order of approximation of the equations, even for arbitrarily small values of e. Figure 3-1 
is plotted for a series of inequalities that define regions of unbounded oscillation; see Equations 
3-17, 3-21, and 3-23. 

The preceeding two chapters have shown that i t  is not valid to extrapolate results from the 
linearized equations for a circular orbit to the linearized equations for an elliptic orbit. The re- 
mainder of the dissertation will demonstrate that there a r e  inertia parameters in the Lagrange 
Region for which the linearized equations a r e  not adequate for either circular or  eccentric orbits. 
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CHAPTER 4 

GENERAL HAMILTONIAN EQUATIONS OF MOTION 

Introduction 

A complete description of the motion of a rigid gravity-gradient spacecraft in an eccentric 
orbit leads to a complex system of equations. Chapter 2 discusses some assumptions frequently 
used to simplify these equations. One of the most common is that it is valid to linearize the equa- 
tions and then treat  the in-plane o r  pitch motion as independent of the coupled roll-yaw equations. 
A second assumption, shown to be false in Chapters 2 and 3, is that a slightly eccentric orbit does 
not affect stability except for the linear resonance case when the pitch period and orbital period 
a r e  identical. In fact, the situation is more complex than the results of the previous chapters in- 
dicate, because linearization also leads to incorrect results even for small angle motion. 

The coupling between the pitch and roll-yaw equations has a significant effect on stability dur- 
ing large amplitude motion, as DeBra (Reference 6) showed by numerical integration. Kane (Ref - 
erence l l ) ,  using a Floquet analysis of an only partially linearized set of equations, showed that 
this coupling was  important even for small-amplitude (e.g. 1 degree) motions. Breakwell and 
Pringle (Reference 12) confirmed this conclusion in a paper that treated the problem of nonlinear 
coupling with canonical transformations and the method of averaging. This very significant paper 
was the first to apply the methods of analytical mechanics to the three-degree-of-freedom problem, 
although Liu (Reference 28) had previously applied canonical transformations to the in-plane libra- 
tion of a spacecraft on an elliptic orbit. 

This chapter and Chapter 5 extend the method of Breakwell and Pringle to higher-order effects 
of orbital eccentricity on the motion of a rigid gravity-gradient-stabilized spacecraft in an eccentric 
orbit. The Hamiltonian for the motion is first developed to third order in terms of the pitch, roll, 
and yaw angles and their associated momentum variables. Then a ser ies  of canonical transforma- 
tions to new variables (for which the second-order portions of the Hamiltonian represent three 
uncoupled linear oscillators) is developed. The Hamilton- Jacobi equation is solved to obtain a 
third canonical transformation, which introduces cyclic coordinates in the second-order Hamiltonian. 
When the third-order Hamiltonian is expressed in the new system, the resulting Hamiltonian equa- 
tions represent a set  of perturbation equations that show the effects of nonlinear resonance. In 
Chapter 5 these perturbation equations are averaged and the inertia parameters that lead to various 
types of resonance are plotted. 
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. 
Hamiltonian for Three Degree of Freedom Motion 

A development of the Hamiltonian for this problem follows in a straightforward manner from 
the kinetic and potential energies of the system. The kinetic energy, T, associated with the attitude 
motion of the spacecraft is 

where 

The potential energy V associated with attitude motion is 

and the Lagrangian L is 

L T - V  

The standard procedure at this point would be to introduce generalized momenta p i ,  defined as 

where 

and 

q3 = d .  
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Unfortunately this leads to complications when t e rms  of similar orders of magnitude a re  collected. 
The general nature of the motion of a successfully stabilized spacecraft is well known. There wil l  
be small oscillations of $ and B about zero, and a small oscillation of 4 about the local vertical 
which rotates at a rate  of 2.rr radians/orbit. Thus the angular momentum about the "three" axis, 
p3,  would have a steady component and a component representing small oscillations. However, 
th i s  can be eliminated by defining 

with the happy result that all the q i  and pi are small as compared with 1. The "order" of a given 
term should be understood as meaning the order of the products of the q i ' s  and pi ' s  in the term, 
(e.g. q,' p, is 3rd order in coordinates and momenta). 

and 

dL - = - - 
d& 

p , + 1  - r 0, s i n  B t r 2  R2 cos B s i n  $ f R, cos B cos + 

The Hamiltonian, H, is defined as 

thus 

1 1 
H = 7 + r z n :  +n:] + [ r ln ,  s i n @ - r z n 2 c o s e s i n $ - n 3 c o s e c o s +  G + V ,  

or 

1 1 1 H =  2i1 (5 q2 + 27 ,  ( r *  q 2  + - 2 n 3 - ( P 3 + 1 ) G  + v .  
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At this point the series expansions 

'1, 
C O S T  = 1 - 2  s i n q  = ri -f+ ... , 

a r e  introduced into the Hamiltonian. When terms of equal order in the generalized coordinates 
and momenta a r e  collected and the substitutions q, +, q, B and q3 = d a r e  introduced, the 
result becomes 

where 

H, = - v ,  

H, p 3 ( 1 - ; ) ,  

1 1 3 P  p,2 t -- p 2 t 3 p3' t -- I 
2 r 2  2 H, = ~ 

*r1 

and fourth-order and higher-order terms will  be ignored. The ser ies  developments for r and v 
introduced in Chapter 3 will  be used in the form 

v = 1 - T, ( t ) ,  

where 

5e2 e 3  
T, ( t )  - 2e cos t - 2 cos 2t - [- cos t + 13 cos 3t] 

e 4  
24 [- 22 cos 2t  + 103 COS 4t] , _ -  
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and 

3 k  (:) = 3+ T , ( t ) ,  

where 

and 

where 

27e3 S, = 3e + -  8 '  

9e2 7e4 s, = 2+2'  

53e 
s3 = ~ 8 '  

and 

With these substitutions and with te rms  T, 4," and T, q: assigned to H,, H can be written 

H = T H i ,  
i = O  

where 

i 

H, = TI  ( t )  - 1 ,  
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L 

and 

H 3  

Diagonalization o f  Second Order Hamiltonian 

When Hamilton's equations are formed from Equation (4-3), the result is six equations that 
are  nonlinear and coupled (i.e., terms q , ,  p j  j # i appear in the equations for q i  o r  p i ) .  The 
Hamilton equations have the form 

a H ,  aH, aH, 
q i  = api api  api + - t - - ~  , 

and 

dH, dH, dH3  
- P i  = a q ,  a q ,  a q ,  t - - '  + -- _ _  

Since H,  contains only first-order terms, it cannot contribute any coupling te rms  to these two 
equations; however, both H, and H, may do SO. If the H, term is ignored (Le., if  the  equations are 
linearized) it is possible to find a canonical transformation to new coordinates for which the second- 
order Hamiltonian equations are uncoupled. It is then possible to use the solution to these equa- 
tions to obtain what amounts to a set of six perturbation equations that determine the effect of in- 
cluding the H, terms in the equations of motion. 

The first step is to find the transformation that uncouples H,. This can be done by regarding 
as a matrix, 

54 



and 

[SI = 

- - 
1 - r 2  1 - r z  
- 0 0 0 -  0 

r 2  r Z  

0 1 + k  - k r l  0 1 0 0 

0 0 k ( r *  - 5) 0 0 0 

1 
0 1 0 0 0 - 

r l  

0 0 0 
1 1 - r 2  

r O  

0 0 0 0 0 

- 
r 0 

1 

.~ 

- 

and finding a constant-coefficient matrix [Dl such that, for q " ,  a column vector in the new 
coordinates, 

represents a canonical transformation to a system H** ( q " ,  p " ,  t ) ,  for which H:* is a diagonal 
matrix. This is done in two steps, first a transformation matrix [K] to a system H* ( 4 '  , P'  , t ) in 
which 

and then a transformation [MI to a system H** ( q "  , p" , t ) in which 

Then the desired matrix [Dl is 



I 

The procedures used a r e  quite general and could be applied to any similar problem. In the par- 
ticular case under consideration, the t e rms  p,  and q, in H, (q ,  p ,  t )  are already in the desired 
form. Thus a matrix [D'l  which diagonalizes the matrix [s'l will be developed where 

[S'I = 

- 
1 - r 2  

r2 
- 0 

1 - r  
0 -  

r 2  

0 l + k - k r l  1 0 

1 
r l  
- 0 0 1 

The prime notation will be dropped JI the remainder of this section; however the meaning is 
-I---: --- - 
U U V l U U 3 .  

A formal procedure for obtaining the first canonical transformation is developed by Pars 
(Reference 29); only the essential steps a r e  outlined herein. This part of the problem can be r e -  
stated as: Given a real  symmetric matrix [SI, find a matrix [K] such that 

where [LI is a diagonal matrix 

[LI = p; 3 , 
and such that 

where 

Then the matrix [K] will define a contact transform 

- 
q = [K] {' 
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which accomplishes the desired result. The first step in obtaining the matrix [K] is to find the 
eigenvalues of the matrix [zl [SI (i.e. find the roots A of 1 S f AZl = 0). 

1 
r l  

x 0 

0 

1 

- h 1 

1 - r 2  - - 

r Z  r 2  

This is equivalent to finding the values of A for  which the determinant equation 

= o  

1 - r 2  1 - r 2  
-A 

r 2  
0 l + k - k r l  1 -A 

0 
r 2  

is satisfied. This equation can be expanded to give 

(4-4) 

The roots of this biquadratic equation a r e  the normal frequencies of the two decoupled normal modes 
of the linear problem associated with H,. When e = 0, k = 3 and Equation 4-5 can be reduced to 

which (with the substitution A = i w )  is the same as Equation 4-4 of Breakwell and Pringle. The 
roots of this equation occur in complex conjugate pairs; when 0 < r l  < r 2  <1, both the roots of 4-5 
and the roots f A, associated with the characteristic equation for the already decoupled pitch motion 

A 2  t k ( r , - r l )  = 0 (4-6) 

a r e  pure imaginary numbers. When h has any of the four values + i o 1 ,  + i w 2 ,  - i w l ,  - iL2  (where (0,  > c L l )  

obtained from Equation 4-5, there is a nontrivial solution to the matrix equation 

1 ,  . - .  , 4 [SI {ei} = -A{ei} , i z  

where the Z i  a r e  the eigenvectors of [zl [ S I .  A set of eigenvectors for the matrix can be obtained 
from the minors of any column of the associated determinant; s ee  Wiley (Reference 30). One set of 
eigenvectors obtained from the second column of Equation 4-4 is based on 

h (1  - r l  - r , )  

-Az  r l  - 1 + r 2  
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(1 +AZ) (5 - r l  5) 

r l  r ,  - (1 -r , )  (1 - r l ) ]  

and in particular is given by 

where p, 0 ,  7 ,  and 6 can be any arbitrary (real or  complex) constants. Now define K as the matrix 
formed from the columns C1, C,, C,, C, , in that order. Then 

where 

and 

f ,  = {E,}T [zl {e,} . 
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Now, if the values of p, U ,  7 ,  and F a r e  chosen such that f = f , = 1, then, in 

[ K I T  [Zl  [K] = [Zl , 

the matrix [K] is symplectic and the transformation 

4 = [K] 4' 

is a contact transformation. In addition, 

[ K I T  [SI  [K] = [El 

where 

0 

0 

0 

A1 

0 

0 

0 0 

A, = i w ,  , 

A, = i w ,  ~ 

and thus 

Thus the matrix [K] defines a contact transformation which transforms H, to H,* and satisfies 
Equation 4-6. The requirement that f 

y, and 5: 

= f = 1 provides two relationships for determining p, U ,  
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and 

Any values of p, CT, y ,  and 6 that satisfy the above equations are satisfactory in defining [K] . Thus 
it would be possible to make two arbitrary choices, such as p = 1, CT = 1, and find values of y and 
8. However, it is more convenient to obtain the second transformation matrix [MI and then find 
two additional relationships that simplify the final transformation matrix [D] . 

The next step in the process is to find a canonical transformation of the form 

{ : I }  [MI {<"} 

that transforms H,*, ( q i l ,  pi '  ) into H,**, ( q i o ,  p i" ) ,  where 

and 

There is a generating function w, given by Whittaker (Reference 31), which can be used to find the 
needed transformation. Consider 

with 

and 
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w 

The above leads directly to the relations 

P:’ 

A i  
qi” + - , q; = 

A i  q: p;’ 

Pi’ = 2 + T ’  

which can be expressed in matrix form as 

{ { I }  = [MI { { ‘ I }  , 

where 

1 
0 -  0 

1 
0 1 0 -  

1 0 
2 

A 1  
1 

- - 0 - 
2 

The first  transformation matrix [K] is of the form 

and thus the matrix [D] would have the form 

I 

( D  - y c z 2  

(. - y ) c z 3  

(. t y ) c z 4  
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The freedom which exists in choosing p, O, y, and 6 permits the choice 

which simplifies [D] to the form 

[Dl = 
0 

0 

2% 1 

0 

0 

2DcZ 4 

and Equations 4-6 and 4-7 become 

4 p 2 { ( 1 - r 1 - r 2 ) ( 1 - i . ~ )  ( r l - r l  r , )  + ( l - r , - r l w : )  r 2 -  ( 1 - r , )  (1 - r l ) ]}  = 1 ,  

4 p 2 { ( 1 - r 1 - r 2 ) ( 1 - i . i ~ )  ( r l - r 1 r 2 )  + ( 1 - r 2 - r l w : )  k ; r l r 2 -  ( 1 - r , )  ( 1 - r l ) ] }  = 1 .  

(4-8) 

(4-9) 

These expressions are rather unwieldy; however, they can be reduced with some algebraic sleight- 
of-hand. Write Equation 4-8 as 

4p2 ((1 - r ,  - r l  uf) r l  r 2  (u: - u: + ((1 - r 2  - r l  u.12) bl r,u: - (1 - r,) (1 - r,)] 

+ (1 - r l  - r , )  (1 -w:) ( r ,  - r l  r,)}) = 1 .  

The term inside the brace can be written as 

- r ~ r , w ~ w ~  + ( l - r , )  r1r2(w:+w;) + ( 1 - r , )  [ - r : - 2 r 1 r 2  + 2 r l - l + r , ]  , 

and w: and a r e  the roots of this equation, which can be written as 

45e4 
- 2 r l  r ,  - 2 r l  - 1 + r ,  - (+ + 7) r l ( l - r l )  w2 

(4-10) 

9 e Z  45e4 
+ 4 ( l - r l ) ( l - r , )  + ( ~ + ~ ) ( l - r ~ )  ( 1 - r 2 )  = 0 .  
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Thus 

and 

When these expressions a r e  substituted in expression 4-10, it becomes identically zero; thus 
Equation 4-8 can be written as 

4p2 (1 - r 2  - r l  L:) r l  r 2 ( u ; -  (1 22)  = 1 ,  

and by a similar process Equation 4-9 becomes 

40-2 (I - r 2  - r u:) r r z  (a: - uI2) = 1 . 

These two equations can be solved to give 

and 

With these two substitutions, [D] becomes 

t 
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0 

0 

0 

0 

0 0 

0 0 

-J 

(4-11) 



Thus the matrix [D] simplifies the roll-yaw portion of the Hamiltonian. 

It is also possible to find new variables that replace q 2  and p,, and eliminate the H,, and H ,  

terms. This time, consider the following portion of the original Hamiltonian: 

Two successive canonical transformations, the first derived from a generating function: 

and 

H* = H ‘  - b p ’ ,  

and the second derived from a generating function 

F*(q,”. p 3 ‘ ,  t) = - p i  4;’ + c ( t ) q ”  

with 

p;’ = -2 = p; - c ( t ) ,  
as;’ 
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and 

H** = H* t b q "  i. , 

combine to give a transformation 

q3 - - q3" + b ( t ) ,  

P, = P; + c ( t )  9 

and a new Hamiltonian 

1 
H** = - 2 (p3 (12  t u 2  qS'l2) + p ;  [c - b  +T, ( t ) ]  + q;'(u:b + & )  

Now if c ( t  ) and b ( t )  a r e  chosen so that 

~ ( t )  - b ( t )  + T, ( t )  = 0 ,  

and 

& ( t )  + u 2 b ( t )  = 0 ,  

i. e., if  C( t ) and b( t ) a r e  solutions to 

y ( t )  + u 2 c ( t )  - ~ : T l  ( t ) ,  

and 

.. 
b ( t )  + u2 b ( t )  = T ,  ( t )  , 

then the Hamiltonian H** becomes 

with T, ( t  ) defined by Equation 4-1, b( t )becomes 

(4-12) 
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E 

where 

2e e 3  
b, = - -  

w 2 - 1  4 ( w 2 - 1 )  ’ 

5e lie4 ~- b, = 
w 2 - 4  6 ( w 2 - 4 )  ’ 

3% 
b3 = 4 ( w 2 - 9 )  ’ 

103e4 
b4 - 6 ( w 2 - 1 6 ) ’  

- 

Similarly 

where 

(4-13) 

13e w,’ - 
c 3  - 4 ( w , 2 - 9 )  ’ 

103e4 w: 

c 4  = 24(w; - 16) ‘ 

When the above transformations are all applied to the original Hamiltonian given by Equation 4-3, 
the new Hamiltonian has the form 

H**(q”, t) = ** Hi ( q ” ,  P ” ,  t )  , 

I 
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where 

H:*(q", p " ,  t) 0 ,  

H:* (q", p",  t) = 0 , 

and H:* is obtained by making the following substitutions in H, ( q ,  p ,  t )  : 

q ,  = d, ,  q;' + d,,q;' 1 

q2 = d,, P;' + d,,P;' I 

P, = d , , ~ ; '  + d,,p2" , 

P, = d,, 4;' + d,,s;' ? 

q, = 4;' + b(t), 

p3 = 4'' + c(t) 1 

where d i  represents the element in the i t h  row and the j t h  column of the matrix [Dl defined by 
Equation 4-11, and b ( t ) ,  c(t) a r e  defined by Equations 4-12 and 4-13. Thus these new coordinates 
lead to a system which has no terms of order 0 o r  1. The t e rms  of order 2 will  be removed, in 
the next section, by a final canonical transformation. 

Solution of  Second Order Equations 

In the preceding section the original Hamiltonian was considerably simplified by a ser ies  of 
canonical transformations. The end result was a system in which the linearized equations repre-  
sent three uncoupled harmonic oscillators. The solution to the linear equation is well known; how- 
ever, when it is obtained by finding Hamilton's principal function S, then this function generates a 
contact transformation which wil l  remove the second-order t e r m s  from the new Hamiltonian. 

The process of finding the principal function for a Hamiltonian of the form 
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I 
! 

follows directly from the solution for  a single harmonic oscillator (Goldstein, Reference 32). The 
principal function s ( q ” ,  a ,  t ) is 

and the transformation defined by this function is obtained from 

& I i  qi” 

1 f5q 
1 

arc s i n  t , as = Pi = 

which is equivalent to 

and 

p; = 3- = cos wi (t + P i )  
J q 

The new Hamiltonian, €I***, is related to the old one by 

Thus the new Hamiltonian is 

(4-14) 

where 



and H:** ( a ,  p,  t )  is obtained from Equation 4-3 by making the following substitutions in H, (q ,  p ,  t ) :  

(t +Pl)  + fi d,, 6 C O S  u, ( t  tp,) , 

p, fi fi c o s > ,  ( t  +,233) + b ( t )  (4-15) 

Summary 

In this  chapter, the equations describing the attitude motion of a rigid gravity-gradient- 
stabilized spacecraft moving in a known eccentric orbit h a s  been formulated from the Hamiltonian 
point of view. A series of canonical transformations, following Breakwell and Pringle (Reference 
12)  were developed; these considerably simplify the Hamiltonian. The formulation is extended to 
include terms to fourth-order in eccentricity. 

The final form of the Hamiltonian given by Equation 4-14 can be easily interpreted. When 
only the linear terms a re  included (i.e., when H*** and all higher-order te rms  are deleted) the 
Hamiltonian equations 

(4-16) 

and 

have the solutions 

p i  ( t )  = P i  ( 0 )  
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and 

ai (t) = ai (0) 

The original variables of the problem (Le., the qi and p i )  are then given by Equations 4-15 
as combinations of sinusoidal oscillations with constant amplitude and frequency. In fact, the 
amplitudes are determined by the initial conditions, and the frequencies are the eigen-frequencies 
or  frequencies of the normal modes found from Equations 4-5 and 4-6. Unbounded motion only 
occurs when w3 = 1, for in this case b( t ) and c(  t ) are unbounded, as can be seen from Equations 
4-12 and 4-13. 

The situation changes when the nonlinear t e rms  are included. The third-order part of the 
Hamiltonian, H:** ( a ,  ,B, t )  is not identically zero; therefore Equations'4-16 no longer have a 
constant value as a solution. The t e rms  in these equations are small in magnitude, either 
because they are second-order in small displacements and momenta; because they involve a 
small parameter e ; or for both reasons. Thus the motion may be regarded as consisting of 
sinusoidal oscillations with slowly varying amplitude and frequency. In the next chapter the 
method of averaging is applied to find regions where these small variations will have a signifi- 
cant effect. 
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CHAPTER 5 

GENERAL PARAMETRIC AND NONLINEAR RESONANCES 

Introduction 

An approximate solution to the single-degree-of-freedom, linear, in-plane, pitch equation was 
developed in t e rms  of asymptotic expansions in powers of a small parameter in Chapter 3. A sec- 
ond form of this general approach, called the method of averaging (or of Krylov-Bogoliubov) is 
applicable to multi-degree-of-freedom equations such as those of the previous chapter. The theory 
for both these methods of solution is given by Bogoliubov and Mitropolsky (Reference 27). A par- 
ticular implementation of the method of averaging is used herein; it follows closely that of Breakwell 
and Pringle (Reference 12). The formulation has been extended to include all terms of second or 
third order in the generalized coordinates and through fourth order in eccentricity. 

The approach outlined in Reference 27 is to consider the problem as defined by kinetic and 
potential energies (which a r e  quadratic forms in the generalized coordinates) and to assign the 
nonlinearities to a perturbation term. This implies that both the nonlinear effects and the other 
components of the perturbing term a r e  "small." The equations a re  transformed, first to normal 
coordinates and then again 
Once this is accomplished, 
standard form," which is 

dx k - 
dt 

to reflect the harmonic solution of the linear portion of the problem. 
the equations a r e  in what Bogoliubov and Mitropolsky refer to as 'Yhe 

(5-1) 

where E is a small parameter and X, may be represented by the sum 

This is exactly the result of Chapter 4 in which the Hamiltonian is developed through third 
order in the generalized coordinates and momenta, and through fourth order in eccentricity. The 
transformations to normal coordinates q",  p",  and then to coordinates a ,  p (which reflect the simple 
harmonic motion associated with the unperturbed linear equations) a r e  accomplished through the 
applications of canonical transformations. 

In the specific case under discussion, Equation 5-1 is replaced by the six Equations 4-16 de- 
veloped in the preceding chapter. The intent of this chapter is to find, by the method of averaging, 
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the portions of the Lagrange region where the perturbing t e rms  due to orbital eccentricity and 
nonlinear coupling have a significant effect on the motion. 

dergo a motion composed of a slowly varying te rm and small  vibrational terms. That is, the time 
required for  any of the variables to change appreciably is long compared with the oscillation period 
of the unperturbed coordinate. When this is the case, Equation 5-1 is replaced in the first approxi- 
mation by an equation of the form. 

The basic assumption of the principle of averaging is that the coordinates of the problem un- 

where 

xk = Ck + small v ibra t iona l  terms , 

M is the operator of averaging with respect to time, and the 6 a r e  held constant during the averag- 
ing. The theory can be continued to develop higher-order oscillations that reflect the effect of the 
small  oscillations in x on the perturbing force and thus on the motion in general. 

t 

There are no constant te rms  in H;** ( a ,  p, t ) ;  thus, when the Hamiltonian is averaged over time, 
its value is zero and the coordinates represent unperturbed motion except in a limited number of 
cases. The third-order Hamiltonian contains a number of te rms  that are themselves products of 
harmonic terms. For example, the te rm 1 - r 2 / r 2  q 1  p, p, that appears in  H, (q, p, t )  is transformed 
into 

in H:* ( q ”  , p“ , t )  and then into 

in H;** ( a ,  p,  t )  . There are two types of te rms  in an expression such as that given above which 
may not integrate to zero. They become more apparent if  it is noted that 

1 
s i n ’ o l ( t  + p 1 ) c o s w 3  ( t + P , )  = 3 c o s w ,  ( t + ~ , )  

1) - .{cos [( 2 3  + w 3 ) t  + 2 w 1 P 1  + w g  P,] + cos [( 2w1 - w 3 ) t  + 2 0 ,  p, - w 2 p 3  
1 ’ 
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:and that 

Thus the first te rm does not average to zero when 2wl = w3 and the second te rm does not 
average to zero when 2wl  = 1, 2, 3, o r  4. These a re  examples of internal and external resonances 
respectively. This nomenclature a r i ses  because the internal resonances a re  inherent in the sys- 
tem, even for a circular orbit. They originate in the expressions for the kinetic and potential ener- 
gies, while the external resonances a r i se  from commensurability of frequencies of the external 
forces and accelerations with the normal frequencies of the system. When the orbit is circular 
(i.e., when e = 0), all the coefficients a i ,  b i ,  and c i  a r e  zero and there are no external resonances. 

Breakwell and Pringle demonstrated the existence of two internal and four external resonances 
for spacecraft with inertia parameters in the Lagrange region. The internal resonances appeared 
for w3 * 2wl andw, 2 w2 - a 1  . External resonances were found when w1 o r  w3 = 1/2, when w3 = 1, 
and when wZ - w1 = 1/2. A number of additional external resonances become apparent when terms 
through the fourth order in e a re  included in the expansions for a( t ), b( t ) , and c ( t ) . Additional 
resonances, both external and internal, could also be obtained by inclusion of fourth-order te rms  
in the Hamiltonian, o r  by consideration of higher-order approximations in the method of averaging. 
The algebra involved in either of the latter two steps would be almost prohibitive, and they are not 
included herein. 

The method of averaging presents a se t  of first-order differential equations whose solutions 
define, within some degree of approximation, the time variation of the parameters (ai, p i )  and 
thus the original variables ( q i ,  p i )  . However, it is not necessary to obtain the solution to these 
equations; also, the approximations in the analysis might cause misleading results. The analysis, 
instead, is intended to determine to what extent the variations are bounded and what conditions a r e  
required to excite significant changes in the unperturbed motion. 

Resonant Frequencies 

Any rigid gravity-gradient spacecraft with inertia parameters in the Lagrange region can be 
shown to be Liapunov-stable for a circular orbit, as shown by Pringle (Reference 16). However, 
there a r e  inertia parameters for which the averaged third-order Hamiltonian is not zero. These 
statements do not conflict; for  the Lagrange region, internal resonances have been shown (Ref- 
erence 12) to produce bounded, but occasionally large, interchanges of energy between pitch, roll, 
and yaw motions. The situation changes markedly when the external resonances are considered 
for  spacecraft in the Lagrange region. In these cases  orbital eccentricity, however small, can 
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excite unbounded oscillations in one or  more of the spacecraft modes. This is just  a three- 
dimensional generalization of the results obtained in  Chapters 2 and 3 for the one-dimensional 
pitch- motion case. 

In discussing the situations in which resonances occur, it is helpful to remember that the mi 
are the frequencies of the normal modes of the linearized equations of motion. They are obtained 
from Equations 4-5 and 4-6, which can be written with A = i w  as 

r l  r 2  w142 t [ k r: - 2 r l  r 2  - (k  - 1 )  r l  + r 2  - 11 w1T2 + (k  + 1) ( 1  - r l  ) ( 1  - r 2  ) = 0 

and 

L: - k ( r 2  - r , )  0 

Thus, since by definition u1 < w 2 ,  therefore 

and 

(i 3 = [ k ( r 2  - r , ) ] 1 ’ 2  , 

where 

- 
a - r l  r 2  , 

b = k r,’ - 2 r l  r 2  - ( k -  l ) r l  + r 2  - 1 , 

c = ( k t l )  ( l - r l ) ( l - r 2 )  , 

and 

(5-4) 

When the Hamiltonian H;** ( a ,  ,L?, t )  is expanded completely in the manner illustrated above, 
the combinations of frequencies shown in Table 5-1 a r e  resonant. 
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Table 5-1 

Resonant Frequency Combinations. 
~~ 

Resonance 

1. w 3 - 1  = 0 

2. 2w1 - 1 = 0 

3. 2w3 - 1 = 0 

4. w 2 - w l - 1  = 0 

5. w3 - 2w1 = 0 

6. w3 + w1 - w 2  = 0 

7. w3 - 2w1 + 1 = 0 

8.  w3 - 2wl - 1 = 0 

9. w3 + 2w1- 1 = 0 

10. w 3  + w1 - w 2  + 1 = 0 

11. w 3  + w2 - w1 - 1 = 0 

12. w 3  - w 2  - w1 + 1 = 0 

13. 2w1 - 2 0 

14. 2w2 - 2 = 0 

15. 2 w 3  - 2 = 0 

16. w ,  + w 2  - 2 = 0 

Effect 

D 

D 

D 

N 

I 

N 

I 

I 

D 

N 

N 

I 

D 

D 

D 

D 
~ 

D indicates divergent oscillations result 

Resonance 

17. w3 + 2w1 - 2 = 0 

18. w3 - 2w2 + 2 = 0 

19. w3 + w1 + w2 - 2 = 0 

20. w3 + w2 - w1 - 2 = 0 

21. wg - w2 - w1 + 2 = 0 

22. 2w2 - 3 = 0 

23. 2w3 - 3 = 0 

24. w1 + w2 - 3 = 0 

25. w3 + 2wl - 3 = 0 

26. w3 + 2 w 2  - 3 = 0 

27. w3 - 2w2 + 3 = 0 

28. w3 + w1 + w 2  - 3 = 0 

29. w3 + w2 - w1 - 3 = 0 

30. 213, - 4 = 0 

31. 2w2 + w 3  - 4 = 0 

32. w1 + w 2  + w3 - 4 = 0 

Effect 

D 

I 

D 

N 

I 

D 

D 

D 

D 

D 

I 

D 

N 

D 

D 

D 

I indicates an  interchange of energy between the pitch and roll-yaw modes 

N indicates no significant effect 

The first six terms have been discussed in Reference 12 and with the exception of the linear 
pitch resonance case ( w 3  = 1) a r e  all either second-order in the coordinates and first-order in ec- 
centricity o r  third-order in the coordinates. The next ten items a r e  third-order in the coordinates 
and first-order in eccentricity o r  second-order in both coordinates and momenta. Items 17 through 
24 a r e  either third-order in eccentricity and second-order in the coordinates o r  the reverse. The 
resonances for items 25 through 30 a r e  third-order in both coordinates and eccentricity o r  second- 
order in the coordinates and fourth-order in eccentricity. The resonances for items 31 and 32 a r e  - 1 both third-order in the coordinates and fourth-order in eccentricity. 
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Each of these resonant-frequency combinations defines a line or  point in the inertia space of 
the Lagrange region. These lines a r e  plotted from numerical evaluation of Equations 5-2, 5-3, and 
5-4 with k = 3 (i.e., f o r  e = 0). The first six lines a r e  shown in Figure 5-1; the next ten a r e  shown 
in Figure 5-2, the following eight in Figure 5-3 and the last eight in Figure 5-4. The same combin- 
ation of lines is shown in Figures 5-5 through 5-8 respectively where the equations are evaluated 
with k = 3.189 (Le., for e = 0.2). The similarity of the figures demonstrates the relative insen- 
sitivity of the locations of most of the lines of resonance to variations in e. 

Behavior Near Resonances 

The Hamiltonian H*** ( a ,  p, t )  has terms with a steady non-zero component whenever any of 
the 32 resonant relationships of the preceding section a r e  satisfied. Whenever this occurs, the 
averaged perturbation equations 

and 

are not identically zero; thus, there a r e  long-term changes in the values of the ai and pi. It is pos- 
sible to determine the nature of these long-term variations without obtaining formal solutions for  
a i  ( t )  and pi ( t ) .  

The procedure is best explained with the aid of several examples. Consider the case where 
2~ - 1 - E ; then the slowly varying terms in the Hamiltonian a r e  

. (5-7) 
3( 1 - r 2 )  d l l  d 2 3  1 

2 &1 [b l  .I 3 ( s  b, - s 2  b, cos [( 20 - 1) t + 2~~ p,] +-- - 

Each of the terms b l ,  c l ,  and s , ,  a r e  first-order or higher in e; thus Equation 5-7 can be written. 

It is possible to obtain the same equations for a l  and p l  from a Hamiltonian that is independent of 
time and thus a constant of the motion, by considering new variables a ; ,  p,' such that 
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Figure 5-1-Resonant-frequency combinations 1-6 in Table 5-1 (e = 0). 
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Figure 5-2-Resonant-frequency combinations 7-16 in Table 5-1 (e = 0). 
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Figure 5-3-Resonant-frequency combinations 17-24 in Table 5-1 (e = 0). 
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r, = I, /I, 

Figure 5-4-Resonant-frequency combinations 25-32 in  Table 5-1 (e = 0). 
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Figure 5-5-Resonant-frequency combinations 1-6 in Table 5-1 (e = 0.2). 
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Figure 5-6-Resonant-frequency combinations 7-16 i n  Table 5-1 (e = 0.2). 
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Figure 5-7-Resonant-frequency combinations 17-24 in Table 5-1 (e = 0.2). 
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Figure 5-8-Resonant-frequency combinations 25-32 in Table 5-1 (e = 0.2). 
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and 

E t  
P , ' ( t>  = P ,  ( t >  fq 

together with a new Hamiltonian H' ( a * ,  P ' )  defined as 

* 
E a 1  H' ( a * ,  P * )  = e K a :  cos ( 2 w , p ; )  t 2w, . 

The perturbation equations a r e  

and 

p,' = e K c o s  2 o l p ,  t A 2w . 

The nature of the solution to these equations depends on the magnitude of E relative to e. When 
I E / ~ w ,  I > I eK1 , p,' is always positive for E > 0 and negative for  E < 0; thus p,' ( t )  increases monot- 
onically for E > 0 and decreases monotonically for E < 0. In this case a,* ( t  ) alternates in sign and 
a,' ( t ) exhibits bounded oscillation. 

in such a manner that 1 i m  a,' ( t  ) -a. This can be more easily seen from the phase plane considera- 
tions which will be discussed next. 

t - m  

The new Hamiltonian H '  ( a ;  , p; ) is a constant of the motion, thus it is possible to draw lines of 
constant H in a phase space with coordinates a,' and 2 ~ ,  p,' . This is done in Figure 5-9 for the case 
I eKI < I E / ~ w I  and in Figure 5-10 for I eKI > I E / ~ w A .  Figure 5-9 is drawn for E > 0 and Figure 5-10 for 

K > 0; it is only necessary to change the direction of arrowheads for the cases E 0 andK < 0. 

There is a third approach to the problem which also depends on the constancy of H'  ( a * ,  p * ) .  
Equating values of H at t = 0 and t = t gives 

H,' ~ a ; ( t )  
e K  2 e T  
_ _  

cos 2 9  p; ( t  ) = - I  

a ;  ( t )  
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Figure 5-9-Phase plane illustrating bounded motion when 2w, - 1  = E  , E > 2 ~ ,  eK. 
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Figure 5-10-Phase plane illustrating unbounded motion when 2wl - 1  = E  , E  < 2 ~ 1  eK. 
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where H,' = H '  ( a * ,  p * )  evaluated at t = 0. However, 
when s i n  2wlp1 = 0). Thus ( t )  = 0 only when 

(t) is zero only when COS 2 w l p 1  = *1 (Le., 

The two sides of this equation are plotted versus a t  (as f i rm and dotted lines, respectively) in 
Figure 5-11 for  ~ / 2 e  w1 K > 1, which clearly reveals the extent to which a ;  (t) is bounded. Fig- 
u re  5-12 makes the same plots for 0 < d 2 e  w1 K < 1. In this case it is apparent that if &; ( t )  is ever 
positive it is always positive, and it can be seen from Equations 5-9 and 5-10 that t L ;  (t) will be- 
come positive for any initial conditions. 

Each of the three approaches leads to the same set of conclusions. The value of a ;  (t ) in- 
creases without bound for  2w1 sufficiently close to 1, and the minimum frequency mismatch (i.e. E )  

required to guarantee bounded motion increases linearly with eccentricity. As has been noted be- 
fore, the first conclusion means that the motion increases until higher-order t e rms  become 
important. 

Fortunately, this same analysis applies to a number of the other resonances shown in Table 5-1. 
In particular, when 2a3 - 1 = E ,  the slowly varying terms in the Hamiltonian have the form 

Y[H*** (a, D, t)] = e K '  a3 cos [( 2w3 - l)t +2w,  p3]  , 

where K '  can be obtained as a collection of terms in the same manner as was done above. Obvi- 
ously the same conclusions apply to this case as did for the previous one. In fact, when any of the 
frequencies a r e  such that 2ui - j = E ,  the Hamiltonian will have the form 

Y[H*** ( a ,  p,  t ) ]  = e '  K a i  cos [(2wi - j ) t  + 2 w i  pi] , 

where K may again be obtained by collecting the appropriate terms in the expansion of H*** ( a ,  p ,  t ), 
and the width of the resonant band is proportional to e j .  Thus frequency combinations 13, 14, 15, 22, 
23, and 30 all lead to unbounded motion if the appropriate value of E is sufficiently small. This is 
the three-dimensional generalization of the parametric resonance phenomena studied in Chapters 2 
and 3. These unbounded notions arise from the variation in the restoring torque with orbit position, 
rather than from the nonlinear terms. 

Both the combinations w1 t u 2  = 2, and wl t u 2  = 3, have long-term variations of the form 
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Figure 5-1 1 -Inf lect ion points for a l* ,  when 2wl - 1 = E ,  E < 2 9  eK. 
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Figure 5-12-Inflection points for &,*, when 2w, - 1 = E ,  E < 2w, eK. 
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-.Although this form differs from any that have been previously discussed, it is similarly applied. 
With w1 + w 2  - 1 ’ = E ,  the averaged Hamiltonian can be written as 

H * * *  ( a ,  p,  t) = K e j c  C O S  [a2 p, + w1 p, + e t ]  . 

The pitch variable a3 is not included in the Hamiltonian, indicating that, except for small  oscilla- 
tions, it is constant. A new Hamiltonian which is also a constant of the motion can be developed 
by considering new variables 

* -  
1 ’  a1 - a 

and 

E t  
P; = P I  ‘w,’ 

and a new Hamiltonian, 

* 
1 <a 

H ’  = K e j  iG cos [ w 2 P z  tu l  P ; ]  + 7 

The canonical equations for a,* ( t  ) and a, (t) are 

= w l K e j  {z s i n  [ w 2 p 2  + w l  p ; ]  

and 

thus, 

and 

2 

1 

w 
a 2 = w (a l ’ +C1)  
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The new Hamiltonian can be written with the above as 

and ;Lt ( t  ) is only zero when 

A graphical construction of the two sides of this equation would be quite similar to Figures 5-11 
and 5-12, except that f (a ,*)  = iwl instead of f (a,*) = a,* . Thus, for any initial conditions 
such that a: ( o ) ,  a, ( 0 )  # 0, a; ( t )  is unbounded if I E / ~ -  K e j  I < 1. Since 

this means that both the roll-yaw modes a re  unbounded, to the order of approximation of this so- 
lution, when E is sufficiently small. 

The 19th, 28th, and 32nd combinations of frequencies in Table 5-1 are all of the form 

w t w 2 t w 3 - j  = 0 .  

The long-period Hamiltonian associated with each of these combinations of frequencies is of the 
form 

H*** ( a , P ,  t )  = K e j i m  cos [w,p, + & , P 2 + u 3 P 3 + ~ t ]  , 

and the change of variables 

* -  
a l  - a l  

E t  
P ;  = P ,  + q 
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F 

leads to a Hamiltonian which is a constant of the motion 

The derivatives of a ;  , a 2 ,  and a 3  are linearly related and 

w - 3 - *  a3 - - w 1  a1 

i.e., 

and 

i.e., 

The Hamiltonian can now be written as 

and, similar to the previous case, 6 ;  ( t )  is zero only when 

In this case u1* ( t )  is unbounded for any se t  of initial conditions such that ( 0 )  a 2  ( 0 )  a3  ( 0 )  f 0 i f  

95 



' I  

where 

Thus, when E is sufficiently small, all three modes a r e  excited and the pitch, roll, and yaw oscil- 
lations increase without bound. 

In a similar manner the combinations of frequencies shown as items 5, 7, 8, 18, and 27 of 
Table 5-1 a re  all of the form 

and the long-period part  of the Hamiltonian has the form 

He** ( a ,  p,  t) = Kej al 6 cos ( w ,  p, - 2wi p, + E t )  , 

and, for  j = 0, this is the internal resonance case of Reference 12. The analysis proceeds with 
new variables, 

* -  a .  - a. 
I '  

E t  
P* = Pi - w_ 

1 

and a new Hamiltonian 

* 
E a i  

H '  = KeJ a: 6, cos (w, p, - 2 w i p i * )  - - 2wi * 

Then 

* *  = - 2wi Kej a * K  cos (w, p, - 2wi pi*) a .  

and 

* -  

a, 
- 

w3 Kej ai* 6 COS ( w3 p, - 2wi p; )  

96 

I 



i 

Therefore 

w3 ;L3 + - &.* = 0 2wi 1 

and 

The new Hamiltonian can thus be written 

H' = Kej .:+-I.; w3 

The process that was demonstrated above applies 

ai* cos ( w 3 p 3  -20i p i ' )  . 

also to this Hamiltonian. Both the phase plane 
and the geometric construction for finding values of ai* for which a,* ( t )  = 0 a re  shown in Ref- 
erence 12. In essence, the important features of this motion a re  that the sum of a: and a3 a re  
constant as is a j  ( j  # i )  and, 

there is an  appreciable periodic interchange of energy between the pitch, a 3 ,  and roll-yaw a i  (i = 1 
or 2) modes. 

In fact, it is possible to obtain an analytic solution for a,* ( t  ) . The first step is to eliminate 
the p's from the equation for ai* ( t  ) . The process is as follows: 

or 

However, 
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and therefore 

or 

which is an elliptic integral of the first kind. This equation is applicable to any of the five cases 
listed above, whether they are internal o r  external resonances. 

The internal resonance for  e = 0 and o3 = 2wl was discovered numerically by Kane (Refer- 
ence 11). He considered a restricted form of three dimensional motion in which the roll and yaw 
angles were linearized and a circular orbit was assumed. Floquet theory was used to evaluate the 
stability of these equations at equal intervals over a parameter space ( K ~ ,  K, ) where K,  = - (1 - r 2  ),,4 
and K, = (1 - r l ) /  r 2 .  The initial pitch angle was the third parameter of his solutions. The pre- 
ceding analysis, when specialized to the case i = 1, j = 0, indicates that there will be a region 
about the line w3 2wl whose width is proportional to the initial pitch amplitude and in which there 
will be a large interchange of energy between the pitch and roll-yaw modes of oscillation. The re- 
sults of Kane's Floquet analysis for initial pitch angles of 5" and 10" are repeated here as Fig- 
u re s  5-13 and 5-14 where these a r e  taken directly from his Figures 8 and 9 respectively. The re- 
sults a r e  replotted versus r l  and r 2  in Figure 5-15 and as predicted in Reference 12 show very 
good agreement with the anticipated results. The scarcity of points at the two ends of the resonance 
line result from the non-uniformity of the test  grid when it is transformed from ( K ~ ,  K, 1 to ( r  1 ,  r 2  ) , 
and could be removed by evaluating the Floquet analysis for a finer grid. There a r e  also three 
points of unstable motion on Figures 5-14 and 5-15 which a r e  not explained by the above. These 
points may be the result of higher order resonance t e rms  not included in this analysis. 

Kane also numerically integrated the exact equations of motion for several  of his points of in- 
stability. H i s  results show that these cases actually correspond to points at which the amplitude 
of the roll-yaw motion exhibits a slow but bounded oscillation as is apparent from the preceding 
analysis of the third order Hamiltonian. Breakwell and Pringle commented on this similarity and 
also demonstrated that the period of the variation in the amplitude of the roll-yaw oscillation ob- 
tained from Equation 5-6 was in good agreement with the result of Kane's numerical integration of 
the exact equations of motion. 

The combinations of frequencies shown as items 9, 17, 25, 26, and 31 in Table 5-1 are all of 
the form 

1, 2 j = 1 , * * * 4 ;  0 3 + 2 w i - j  = 0 ,  i =  



K =-A 
'1 

-0.9 -0.8 -0.7 -0.6 -0.5 -0 .4  -0.3 -0.2 -0.1 0 

0.9 

0.8 

0.7 

0.6 x 
11 

N 

0.5 

0.4 

0.3 

0.2 

Figure 5-13-Instability chart for @o = 5 from Kane (Reference 11). 
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and the form of the Hamiltonian associated with these te rms  is 

This general form resembles what resulted when the resonance w3 2 2wl was evaluated in the Delp 
region in Reference 12. When the approach is generalized, the following results a r e  apparent. The 
difference between the pitch variable a3 and the appropriate roll-yaw variable ai is a constant, Le., 

When the frequency mismatch E is large enough, bounded oscillations a re  possible for a3 ( t )  and 
ai ( t  ) . However, if I E / ~ w ,  K e j  I is sufficiently small, the motion of both a3 ( t  ) and ai ( t )  is com- 
pletely unbounded. Similarly the combinations of frequencies shown as items 6, 10, 11, 20, and 29 
are all of the form 

w 3 + w i - w . ? k  = 0 ,  i , j  = 1 ,  i f j  k = 1 , 2 , 3 ,  

and they a re  all associated with te rms  in the Hamiltonian of form: 

In this case 

w.  0 

a .  t 2 a .  C, and a3  - $ ai = C, 
J 1 '  

The first of these two relations establishes that if  the roll-yaw motion is initially small it will re- 
main small; the second shows that the pitch motion will also remain small. 

The frequency combinations shown as items 12 and 21 in Table 5-1 are both of the form 

w 3 - w 1 - w 2 + j  = 0 ,  j = 1 , 2 ,  

and the associated Hamiltonian has  the form 

H = K e j ) / c r l a z a 3  c o s [ ( w 3 - w 1 - w 2 +  j ) t + w 3 / 3 3 - w 1 P 1 - w 2 P 2 ] .  
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The analysis for  these two cases  shows that 

and 

w 
a3 + -  w1 a1 = c2 ' 

Thus energy can be interchanged between the pitch a3 and both of the roll yaw modes a l  and a z .  

All three modes a r e  bounded and there will be an appreciable interchange only if I d w l  K e j  1 is suf- 
ficiently small. 

Application to DODGE Spacecraft 

The results of the preceding analysis find an interesting application in the DODGE satellite 
(Department of Defense Gravity Experiment) of the Johns Hopkins University Applied Physics Lab- 
oratory. This spacecraft was designed to test  several combinations of mechanical configurations 
and damping methods. The flight experience of DODGE has displayed a number of unexplained 
anomalies in the actual versus predicted attitude motion (Reference 33). This analysis does not 
purport to explain these anomalies; however it does illustrate some interesting features. 

It is possible to vary the length of the inertia booms of the DODGE spacecraft and this feature 
has been exercised frequently during the first six months of the spacecraft's flight. The inertia 
parameters corresponding to two of the known configurations for DODGE a r e  superimposed on 
Figures 5-16 and 5-17. At various times in the flight the configuration has been such as to map 
into other points in this same area. These two points straddle two of the lines of "unbounded" mo- 
tion which were developed in the preceding section. It is possible that for some portions 
of the DODGE Mission the inertia parameters have been such as to plot exactly on one of these 
lines. Actually, no spacecraft with similar extensible booms is exactly rigid; we cannot exactly 
equate the normal frequencies wl, w Z ,  and w 3  with the telemetered boom lengths. Thus we cannot 
determine whether there have been times when the frequencies of the normal modes have exactly 
satisfied the cri teria for resonance. 

Even so, there a r e  several points that should be considered. Although, as a result of the un- 
certainty mentioned above, we cannot state conclusively that the otherwise unexplained large ampli- 
tude motions of the DODGE spacecraft a r e  at least partly due to the resonance phenomena des- 
cribed herein, i t  is possible. These resonances depend on frequencies of excitation associated 
with t e rms  of the third and fourth order in e. However, as mentioned in the previous section, the 
magnitude of the possible disturbance does not depend on the value of e .  A numerical simulation of 
the spacecraft equations of motion that includes terms of third or fourth order in e from the devel- 
opments fo r  the orbital parameters (as most do) cannot possibly model the effect of these resonances. 
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Figure 5-17-Resonance lines for large intermodal energy exchange. 
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The preferred method (this may sound like a paradox) of reducing any possible resonance ef- 
fects for DODGE is to shorten the main booms. This unfortunately tends to decrease the pitch and 
roll restoring torques, but it moves the parameter point ( r 1, r 2  ) toward a "safe" area of Fig- 
ures  5-16 and 5-17 (see below). The other alternative-lengthening the booms-leads to a more 
planar configuration; more possible resonances exist for this configuration than for any other, and 
it should be avoided if possible. 

Summary 

The motion of a nominally stable gravity-gradient-stabilized spacecraft in a nearly circular 
orbit is often described as consisting of small oscillations of its normal modes plus small forced 
oscillations due to the orbital eccentricity. This description is known to be inadequate if the in- 
plane (pitch) period is the same as the orbital period ( w ,  = 1); there is then a linear resonance be- 
tween the in-plane mode and the first term in the expansion for the non-uniform rate of rotation of 
the local vertical. In other respects, too, the situation is much more complex. Resonance rela- 
tionships exist whenever the normal frequencies a r e  such that there a r e  terms in the equations of 
motion for which 

Thirty-two resonance combinations of frequencies for a single rigid body in a slightly eccentric 
orbit a r e  shown in Table 5-1. These combinations were developed on the basis of a first-order 
solution to a set  of equations expanded through the third order in the generalized coordinates and 
momenta and with terms through fourth order in e retained in the expansions for the orbital param- 
eters. Additional t e rms  would undoubtedly appear if  a higher-order solution were developed, or  if 
more terms were included in the equations of motion or of the orbital expansions. 

Nineteen of the resonance coinbinations shown in Table 5-1 lead to unbounded increases in the 
amplitude of oscillation of one or more of the spacecraft's modes. Figure 5-16 plots the loci of 
inertias for which these resonances exist. Eight more of the combinations of frequencies lead to 
significant interchanges of energy between various modes of oscillation (e.g., a small pitch oscil- 
lation could change to a large roll-yaw oscillation and then back to a small pitch oscillation with a 
typical period for the interchange of twenty orbits). Figure 5-17 shows the loci of inertial combin- 
ations fo r  which this occurs. The remaining five resonances have no significant effect on the motion. 

Several comments on the analysis of the preceding section a r e  in order. A s  has been noted 
previously, the phrase "unbounded motion" means that the motion increases to a point for  which 
higher-order terms become significant. A measure of the closeness of the frequency resonance 
of the form 1 E / K ~ ~  w I  which is required to produce the various motions is developed for each situa- 
tion. The term K is a constant which is obtained by collecting terms in the expansion .of the Ham- 
iltonian, as illustrated in the previous section for the case 2 ~ ,  - 1 = 0. As such the value of K is 
dependent on the order to which the solution is formulated. Thus, these conditions for  bounded 
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motion represent the relationship between E and the order of E for which the resonance becomes 
important, and not the exact value of E ,  unless K includes higher-order terms. 

When the inertia parameters of a spacecraft lie exactly on any of the lines of Figures 5-16 or  
5-17, the motion will be resonant no matter how small e is. The rate of change of the appropriate 
mode will depend on e, but the final value will not. This was also demonstrated in Chapter 2, where 
each of the unstable regions exists for an arbitrarily small  e. The dependency of the rate of di- 
vergence on e is indicated for the planar case by Figures 2-6 through 2-8. 

106 



CHAPTER 6 

CONCLUSION 

Summary 

The analyses in the preceding chapters have demonstrated a number of differences between the 
motion of a rigid gravity-gradient-stabilized spacecraft as determined by a linearized analysis for 
a circular orbit and as determined by a more complete analysis for the same spacecraft in a slightly 
eccentric orbit. Pr ior  investigation, both analytical and numerical, had previously indicated the 
importance of considering the various effects studied herein. The major contribution of this dis- 
sertation is the specific demonstration-in a manner suitable for use in spacecraft design-of the 
effect and location of both parametric and nonlinear resonances. 

There a r e  a large number of resonances that can affect the motion of a gravity-gradient- 
stabilized spacecraft. Several possible resonances occur for inertia parameters in the portion of 
parameter space at present considered most desirable for spacecraft design. Many of the res- 
onances only occur for eccentric orbits, and several a r e  the result of terms which a r e  third- o r  
fourth-order in eccentricity. The rate at which a particular resonance affects spacecraft motion 
is a function of the magnitude of the eccentricity as is the width of the band in parameter space for 
which the resonance occurs. However, in any given resonant situation the peak magnitude of the 
oscillation does not depend on the value of the eccentricity, although for the energy-interchange 
types of resonance it does depend on the initial conditions. 

Recommendations 

The existence of resonances, such as those studied in the preceding chapters, has  consequences 
that should be considered in the design of any gravity-gradient-stabilized spacecraft. In the con- 
ceptual design stage, configurations which deliberately utilize an interchange type of resonance to 
transfer energy from one mode to another to enhance damping (e.g. Pringle (Reference 34)) should 
be considered. Once any configuration has been selected, the parameter selection process should 
specifically include consideration of all the types of resonance. 

In general, much of the analysis of a given spacecraft is based on the results of a digital simu- 
lation of the equations of motion. These simulations frequently retain the nonlinear character of the 
equations of motion as is desirable. However, if the expansions for the radius vector and true anom- 
aly a r e  limited to first-order terms in eccentricity, the numerical simulations cannot demonstrate 
the effect of many of the pertinent resonances. Terms through the fourth order in eccentricity should 
therefore be included in the simulations even though in nonresonant situations they have little effect. 
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Extensions 

The analysis of this dissertation could be extended in several directions: it could include 
higher-order terms in the Hamiltonian, o r  continue the method of averaging to second order. How- 
ever, the return from either of these steps is not likely to justify the effort. 

The analysis could also be extended to cover several  types of spacecraft presently being.con- 
sidered. The equations could be quickly modified to include the effect of a constant-speed inertia 
wheel as has been suggested for improved yaw response in a number of spacecraft. Or the effects 
of damping on the motion of an essentially rigid spacecraft (achieved through use of hysteresis rods 
or  a greaseball type of damper) could be considered. The order of the system could be extended 
to include two- or three-body spacecraft, thus including configurations such as the Vertistat. 

The analysis of the fourth and fifth chapters follows a formal procedure which is applicable 
to a large class of mechanical systems whose motion consists of "small oscillations." The Ham- 
iltonian for any such system can be written as the sum of terms of increasing order in the coordi- 
nates and momenta (i.e. H = H, + H, + . . . + Hn) . It may be possible to determine generalized cri teria 
fo r  parametric and nonlinear resonances from the form of the third and higher order terms in the 
Hamiltonian without requiring a complete analysis such as the preceding. For example if in the 
second order Hamiltonian there exists a coordinate pair q i ,  pi  such that there a r e  no terms in 
q i  q j ,  q i  p j  or pi p j  for i # j , then the linear equations fo r  the ;li and Pi a r e  independent of the 
remaining variables. There may be similar cri teria for the third order Hamiltonian which de- 
termine the existence o r  absence of the various resonances. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, November 5 ,  1969 
039-0 1-0 1-0 1-5 1 
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Appendix A 

Basic Equations of Motion 

The motion of a rigid spacecraft in an inverse square force field can be completely specified 
by six coordinates. The position of the center of mass can be specified by three coordinates r, p, 

v and the attitude of the body about its center of mass by the Euler angles 6, 8, and +. The equa- 
tions of motion for this six-degree-of-freedom problem can be obtained directly from the potential 
and kinetic energies via the Lagrangian formalism. 

The kinetic energy of the spacecraft is 

+ I, n; + I, n3’3 

where 

and 

n3 = - (B + + > s i n $  + ( & + ; ) c o s  (0 + p >  c o s + .  

The potential energy of the spacecraft is 

. 
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The three Lagrangian equations for the coordinates describing the motion of the center-of-mass 
of the spacecraft are 

.. I ,  + I 3  - I 2  
m S  r - m S  r ~2 - ms r cos2 p ;2 - 

and 

d - d t  (ms r 2 p  + I ,  ( ~ 1 ~  cos 4 -  I ~ ( u ,  s i n $ )  + ms r 2  C 2  c o s p  s i n p  

The three preceding equations all contain terms of sharply contrasting magnitudes since the in- 
ert ias I ,  , I,, and I ,  a r e  all of the order ms .e2 where 4 is the linear dimension of the spacecraft. 
The ratio ( X / r ) 2  is on the order of 
the orbital coordinates can be simplified to the form 

for a gravity gradient spacecraft, thus the equations for 

and these are the well known equations for the motion of a point mass subject to an inverse square 
gravitational force. Actually Beletskii demonstrated’in Reference 9 that the relativistic correction 
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due to the velocity of a typical gravity stabilized spacecraft is several orders larger then the 
t e rms  deleted above, although it too can be safely ignored. The coordinate system can be chosen 
such that p = j = 0 in the above equation leaving the two familiar equations 

and 

+ - 3pe ( I ~  - 1 , ) ( s i n ~ ~ s i n 2 + + c o s ~ ~ s i n ~ ~ s i n 2 +  

2r3 

- s i n  2 4 s i n  ecos  2+) = 0 ,  
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Appendix B 

Auxiliary Formulas Relating to Orbital Mechanics 

A collection of formulas which a r e  applicable to the motion of a point mass in an inverse 
square gravitational field are given below. 

Force of Gravity 

Motion in an Elliptical Orbit 

w _ -  K -  2n ~ 

ab - T 

- ,2 K 2  a 
w g z = - - -  a 3 b 2  a3  

Useful Derivatives 

dv K ~~ K ( l  + e   cos^)^ 
dt - r 2  

- 

P2 

-2eK s i n  v 
dv - rp 
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Change of Independent Variable 

d 2 [ 1  - d 2  [ 1 dv + d [  1 dc  dv 7 (x) dv dv d t  
- -  

d t  

- K 2  d 2  [ 1 2eK2 s i n v  fi -- - 
r4 dv2 p r 3  d t  

- p ( 1 i - e c o s v )  d 2  [ 1 p 2 e s i n v  dC 1 - 
r 3  dv r3 77 
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Appendix C 

Development of Asymptotic Expansion Formulas to  the Third Order 

The method of application of asymptotic expansions to problems of nonlinear oscillations 
which is used herein was developed by the Russian authors N. M. Krylov and N. M. Bogoliubov 
in Reference 26. A more thorough explanation of the method is given by N. M. Bogoliubov and 
Y. A. Mitropolsky in Reference 27, and readers interested in the theory underlying the develop- 
ment of the formulas which follow should consult the latter reference. A considerable simpli- 
fication in the development results from the restricted form of the disturbing function for this 
problem. 

The intent of this approach is to find a solution to the differential equation 

in the form 

where a and mb a r e  variables obtained from the equations 

" =  1 

and 

The perturbing function which is needed for this application is of the form 
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Formally the problem becomes one of finding functions An (a), Bn (a), u n  (0 ,  +, t )  n = 1, . - - , m  
such that Equation C-2, with a and + defined by Equations C-3 and C-4, satisfies Equation C-1 to 
an order c m t  '. This is accomplished by differentiating Equation C-2 twice with the aid of Equa- 
tion C-3 and C-4, and substituting the result into the left hand side of Equation C-l. Then the 
right hand side of Equation C-1 is also expanded by substituting Equation C-2 for x in f (  t , x). 

Terms of equal magnitude in E are then equated to give a series of differential equations from 
which the desired functions are obtained. The resulting equations are all of the form 

= Fm + 2 c  Am s i n $  + 2auBm cosIC, 

where 

dA2 a1 dB2 dB1 
B, -A, da - A, x) c o s $  + (aA, da + aA, da 

a, 8% 
s i n  + - A, (x f 2 3, 

d 2  u 1  a 2  U, d 2  u ,  d Z  u ,  

- 2A2 daat - (B: f 2wB2) 7 - (2A, B, + 2 u A 2 )  - A: - 
d a' d $  
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and 

dB3 a 2  dB1 
+ (.Al da + aA, da + aA3 da f 2A, €3, f 2A, B, + A 3  

a 2  U, a 2  U ,  a 2  u2 
- A,- - (B:+ 2wB2) 7 - (2A,B, +2zA2)  1 a a 2  ab  

The first equation is solved for u,, A , ,  and B, as follows. Assume that u1 and F, can be written as 
double Fourier series, 

and 

. - .. . . - .. ... . .. . .. .. 
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equate the coefficients of equal harmonics on both sides of the first of Equations C-6 to obtain 

l 7 1  
1 -  

' l n m  - (n+mw), # o 

and require that 

%A, s i n $  + 2 a w B 1  cos$ + 7 F , , ~  exp [ i (n t  +m+>] = 0 
n m  

for all n, m such that w 2  - ( n  +mu), = 0. This development is only valid for the "nonresonance case" 
which is characterized by a requirement that 

P f, 

fo r  integer values of p and q (other than p = q = 1) such that 

P -  n 

for values of n and m that occur in the expansion of F, as a Fourier series. (A similar set  of 
formulas, which are valid for the "resonance case," are developed later in this appendix.) 
The only t e rms  in F,,: for which 3 - (n  + mu)' = 0 ,  subject to the above restriction, occur for 
n = 0, m = *l. This part of F, can be written as 

and A, ( a )  and B, ( a )  a r e  

and 
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The values of A,,  B,, and u1 obtained from the above process can be used to expand F, (a, $, t ) as 
a Fourier series from which A,, B,, and U, can be found and this process can be continued to any 
desired degree of approximation. 

The first order solution to Equation C-1 is expressed as 

where 

and 

the m order solution is 

w + eBl (a), 

n = l  

where 

m 

and 

Several changes a r e  made in the above process for the "resonance case" which occur when 
m a  p/q. In this case A is defined by 
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Equation C-1 is rewritten in the form 

d'"+ (Gy x = E [ f ( t ,  x,-nx] > 

dt 

and there is a change of variables from 3 to 0 where 

The form of the solution becomes 

where a and B are obtained from 

and 

The disturbing function is still in the form of Equation C-5 and the set  of Equations C-6 is r e -  
placed by 

P F, ( a ,  +, t )  f 2 q A ,  s i n +  

f 2-B ,  - A  a c o s +  , ) 
J B l  

f a x  A, 2 + (5) u 2  = F2 ( a ,  3. t )  f 
2 

- -  a*, ae B, + a B; + 
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and 

dA1 dA2 dA1 
B, - A, - da A, - B, 

and 
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The rest of the procedure is quite similar to that for the nonresonant case. However this t ime 
1 is U n m  

whenever 

(q - ("+.$ # 0 

and LI:, = 0 otherwise. The previous inequality could also be written as 

and there a r e  a number of values of n, m for which it is not satisfied (e.g., when p = 1, q = 2 it fails 
for n = 1, m = -1). The terms in F, ( a ,  4 ,  t )  for which the inequality fails can be written in the form 

h, (a ,  4, t )  s i n $  + h, ( a ,  4,  t )  c o s 4  

and by equating the harmonics in sin $ and COS $, 

and 

As in the nonresonant case this process can be continued to obtain An, Bn , and un to any desired order. 
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